mosesdecoder/moses/TranslationModel/CYKPlusParser/ChartRuleLookupManagerMemory.cpp

277 lines
10 KiB
C++
Raw Normal View History

/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2011 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <iostream>
#include "ChartRuleLookupManagerMemory.h"
#include "DotChartInMemory.h"
2012-11-12 23:56:18 +04:00
#include "moses/ChartParser.h"
2012-11-12 23:56:18 +04:00
#include "moses/InputType.h"
#include "moses/ChartParserCallback.h"
#include "moses/StaticData.h"
#include "moses/NonTerminal.h"
#include "moses/ChartCellCollection.h"
#include "moses/TranslationModel/PhraseDictionaryMemory.h"
using namespace std;
namespace Moses
{
ChartRuleLookupManagerMemory::ChartRuleLookupManagerMemory(
const ChartParser &parser,
const ChartCellCollectionBase &cellColl,
const PhraseDictionaryMemory &ruleTable)
: ChartRuleLookupManagerCYKPlus(parser, cellColl)
, m_ruleTable(ruleTable)
{
CHECK(m_dottedRuleColls.size() == 0);
size_t sourceSize = parser.GetSize();
m_dottedRuleColls.resize(sourceSize);
const PhraseDictionaryNodeMemory &rootNode = m_ruleTable.GetRootNode();
for (size_t ind = 0; ind < m_dottedRuleColls.size(); ++ind) {
#ifdef USE_BOOST_POOL
DottedRuleInMemory *initDottedRule = m_dottedRulePool.malloc();
new (initDottedRule) DottedRuleInMemory(rootNode);
#else
DottedRuleInMemory *initDottedRule = new DottedRuleInMemory(rootNode);
#endif
DottedRuleColl *dottedRuleColl = new DottedRuleColl(sourceSize - ind + 1);
dottedRuleColl->Add(0, initDottedRule); // init rule. stores the top node in tree
m_dottedRuleColls[ind] = dottedRuleColl;
}
}
ChartRuleLookupManagerMemory::~ChartRuleLookupManagerMemory()
{
RemoveAllInColl(m_dottedRuleColls);
}
void ChartRuleLookupManagerMemory::GetChartRuleCollection(
const WordsRange &range,
ChartParserCallback &outColl)
{
size_t relEndPos = range.GetEndPos() - range.GetStartPos();
size_t absEndPos = range.GetEndPos();
// MAIN LOOP. create list of nodes of target phrases
// get list of all rules that apply to spans at same starting position
DottedRuleColl &dottedRuleCol = *m_dottedRuleColls[range.GetStartPos()];
const DottedRuleList &expandableDottedRuleList = dottedRuleCol.GetExpandableDottedRuleList();
2013-05-29 21:16:15 +04:00
2012-10-02 16:27:02 +04:00
const ChartCellLabel &sourceWordLabel = GetSourceAt(absEndPos);
// loop through the rules
2013-05-29 21:16:15 +04:00
// (note that expandableDottedRuleList can be expanded as the loop runs
// through calls to ExtendPartialRuleApplication())
for (size_t ind = 0; ind < expandableDottedRuleList.size(); ++ind) {
// rule we are about to extend
const DottedRuleInMemory &prevDottedRule = *expandableDottedRuleList[ind];
// we will now try to extend it, starting after where it ended
size_t startPos = prevDottedRule.IsRoot()
2013-05-29 21:16:15 +04:00
? range.GetStartPos()
: prevDottedRule.GetWordsRange().GetEndPos() + 1;
// search for terminal symbol
// (if only one more word position needs to be covered)
if (startPos == absEndPos) {
// look up in rule dictionary, if the current rule can be extended
// with the source word in the last position
const Word &sourceWord = sourceWordLabel.GetLabel();
const PhraseDictionaryNodeMemory *node = prevDottedRule.GetLastNode().GetChild(sourceWord);
// if we found a new rule -> create it and add it to the list
if (node != NULL) {
2013-05-29 21:16:15 +04:00
// create the rule
#ifdef USE_BOOST_POOL
DottedRuleInMemory *dottedRule = m_dottedRulePool.malloc();
new (dottedRule) DottedRuleInMemory(*node, sourceWordLabel,
prevDottedRule);
#else
DottedRuleInMemory *dottedRule = new DottedRuleInMemory(*node,
2013-05-29 21:16:15 +04:00
sourceWordLabel,
prevDottedRule);
#endif
dottedRuleCol.Add(relEndPos+1, dottedRule);
}
}
// search for non-terminals
size_t endPos, stackInd;
// span is already complete covered? nothing can be done
if (startPos > absEndPos)
continue;
else if (startPos == range.GetStartPos() && range.GetEndPos() > range.GetStartPos()) {
// We're at the root of the prefix tree so won't try to cover the full
// span (i.e. we don't allow non-lexical unary rules). However, we need
// to match non-unary rules that begin with a non-terminal child, so we
// do that in two steps: during this iteration we search for non-terminals
// that cover all but the last source word in the span (there won't
// already be running nodes for these because that would have required a
// non-lexical unary rule match for an earlier span). Any matches will
// result in running nodes being appended to the list and on subsequent
// iterations (for this same span), we'll extend them to cover the final
// word.
endPos = absEndPos - 1;
stackInd = relEndPos;
2013-05-29 21:16:15 +04:00
} else {
endPos = absEndPos;
stackInd = relEndPos + 1;
}
ExtendPartialRuleApplication(prevDottedRule, startPos, endPos, stackInd,
dottedRuleCol);
}
// list of rules that that cover the entire span
DottedRuleList &rules = dottedRuleCol.Get(relEndPos + 1);
// look up target sides for the rules
DottedRuleList::const_iterator iterRule;
for (iterRule = rules.begin(); iterRule != rules.end(); ++iterRule) {
const DottedRuleInMemory &dottedRule = **iterRule;
const PhraseDictionaryNodeMemory &node = dottedRule.GetLastNode();
// look up target sides
const TargetPhraseCollection &tpc = node.GetTargetPhraseCollection();
// add the fully expanded rule (with lexical target side)
AddCompletedRule(dottedRule, tpc, range, outColl);
}
dottedRuleCol.Clear(relEndPos+1);
}
// Given a partial rule application ending at startPos-1 and given the sets of
// source and target non-terminals covering the span [startPos, endPos],
// determines the full or partial rule applications that can be produced through
// extending the current rule application by a single non-terminal.
void ChartRuleLookupManagerMemory::ExtendPartialRuleApplication(
const DottedRuleInMemory &prevDottedRule,
size_t startPos,
size_t endPos,
size_t stackInd,
DottedRuleColl & dottedRuleColl)
{
// source non-terminal labels for the remainder
const InputPath &inputPath = GetParser().GetInputPath(startPos, endPos);
const NonTerminalSet &sourceNonTerms = inputPath.GetNonTerminalSet();
// target non-terminal labels for the remainder
2012-10-02 16:27:02 +04:00
const ChartCellLabelSet &targetNonTerms = GetTargetLabelSet(startPos, endPos);
// note where it was found in the prefix tree of the rule dictionary
const PhraseDictionaryNodeMemory &node = prevDottedRule.GetLastNode();
const PhraseDictionaryNodeMemory::NonTerminalMap & nonTermMap =
node.GetNonTerminalMap();
const size_t numChildren = nonTermMap.size();
if (numChildren == 0) {
return;
}
const size_t numSourceNonTerms = sourceNonTerms.size();
const size_t numTargetNonTerms = targetNonTerms.GetSize();
const size_t numCombinations = numSourceNonTerms * numTargetNonTerms;
// We can search by either:
// 1. Enumerating all possible source-target NT pairs that are valid for
// the span and then searching for matching children in the node,
// or
// 2. Iterating over all the NT children in the node, searching
// for each source and target NT in the span's sets.
// We'll do whichever minimises the number of lookups:
if (numCombinations <= numChildren*2) {
2013-05-29 21:16:15 +04:00
// loop over possible source non-terminal labels (as found in input tree)
NonTerminalSet::const_iterator p = sourceNonTerms.begin();
NonTerminalSet::const_iterator sEnd = sourceNonTerms.end();
for (; p != sEnd; ++p) {
const Word & sourceNonTerm = *p;
// loop over possible target non-terminal labels (as found in chart)
ChartCellLabelSet::const_iterator q = targetNonTerms.begin();
ChartCellLabelSet::const_iterator tEnd = targetNonTerms.end();
for (; q != tEnd; ++q) {
const ChartCellLabel &cellLabel = q->second;
// try to match both source and target non-terminal
const PhraseDictionaryNodeMemory * child =
node.GetChild(sourceNonTerm, cellLabel.GetLabel());
// nothing found? then we are done
if (child == NULL) {
continue;
}
// create new rule
#ifdef USE_BOOST_POOL
DottedRuleInMemory *rule = m_dottedRulePool.malloc();
new (rule) DottedRuleInMemory(*child, cellLabel, prevDottedRule);
#else
DottedRuleInMemory *rule = new DottedRuleInMemory(*child, cellLabel,
2013-05-29 21:16:15 +04:00
prevDottedRule);
#endif
dottedRuleColl.Add(stackInd, rule);
}
}
2013-05-29 21:16:15 +04:00
} else {
// loop over possible expansions of the rule
PhraseDictionaryNodeMemory::NonTerminalMap::const_iterator p;
PhraseDictionaryNodeMemory::NonTerminalMap::const_iterator end =
nonTermMap.end();
for (p = nonTermMap.begin(); p != end; ++p) {
// does it match possible source and target non-terminals?
const PhraseDictionaryNodeMemory::NonTerminalMapKey &key = p->first;
const Word &sourceNonTerm = key.first;
if (sourceNonTerms.find(sourceNonTerm) == sourceNonTerms.end()) {
continue;
}
const Word &targetNonTerm = key.second;
const ChartCellLabel *cellLabel = targetNonTerms.Find(targetNonTerm);
if (!cellLabel) {
continue;
}
// create new rule
const PhraseDictionaryNodeMemory &child = p->second;
#ifdef USE_BOOST_POOL
DottedRuleInMemory *rule = m_dottedRulePool.malloc();
new (rule) DottedRuleInMemory(child, *cellLabel, prevDottedRule);
#else
DottedRuleInMemory *rule = new DottedRuleInMemory(child, *cellLabel,
2013-05-29 21:16:15 +04:00
prevDottedRule);
#endif
dottedRuleColl.Add(stackInd, rule);
}
}
}
} // namespace Moses