mosesdecoder/moses/HypothesisStackNormal.h

134 lines
4.9 KiB
C
Raw Normal View History

// $Id$
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#ifndef moses_HypothesisStackNormal_h
#define moses_HypothesisStackNormal_h
#include <limits>
#include <set>
#include "Hypothesis.h"
#include "HypothesisStack.h"
2015-10-25 16:07:25 +03:00
#include "Bitmap.h"
namespace Moses
{
2015-10-25 16:07:25 +03:00
// class Bitmap;
// typedef size_t WordsBitmapID;
/** A stack for standard phrase-based decoding. */
class HypothesisStackNormal: public HypothesisStack
{
public:
friend std::ostream& operator<<(std::ostream&, const HypothesisStackNormal&);
protected:
float m_bestScore; /**< score of the best hypothesis in collection */
float m_worstScore; /**< score of the worse hypothesis in collection */
std::map< WordsBitmapID, float > m_diversityWorstScore; /**< score of worst hypothesis for particular source word coverage */
float m_beamWidth; /**< minimum score due to threashold pruning */
size_t m_maxHypoStackSize; /**< maximum number of hypothesis allowed in this stack */
size_t m_minHypoStackDiversity; /**< minimum number of hypothesis with different source word coverage */
bool m_nBestIsEnabled; /**< flag to determine whether to keep track of old arcs */
/** add hypothesis to stack. Prune if necessary.
* Returns false if equiv hypo exists in collection, otherwise returns true
*/
std::pair<HypothesisStackNormal::iterator, bool> Add(Hypothesis *hypothesis);
/** destroy all instances of Hypothesis in this collection */
void RemoveAll();
void SetWorstScoreForBitmap( WordsBitmapID id, float worstScore ) {
m_diversityWorstScore[ id ] = worstScore;
}
public:
float GetWorstScoreForBitmap( WordsBitmapID id ) {
if (m_diversityWorstScore.find( id ) == m_diversityWorstScore.end())
return -std::numeric_limits<float>::infinity();
return m_diversityWorstScore[ id ];
}
2015-10-25 16:07:25 +03:00
virtual float GetWorstScoreForBitmap( const Bitmap &coverage ) {
return GetWorstScoreForBitmap( coverage.GetID() );
}
HypothesisStackNormal(Manager& manager);
/** adds the hypo, but only if within thresholds (beamThr, stackSize).
* This function will recombine hypotheses silently! There is no record
* (could affect n-best list generation...TODO)
* Call stack for adding hypothesis is
AddPrune()
Add()
AddNoPrune()
*/
bool AddPrune(Hypothesis *hypothesis);
/** set maximum number of hypotheses in the collection
* \param maxHypoStackSize maximum number (typical number: 100)
* \param maxHypoStackSize maximum number (defauly: 0)
*/
inline void SetMaxHypoStackSize(size_t maxHypoStackSize, size_t minHypoStackDiversity) {
m_maxHypoStackSize = maxHypoStackSize;
m_minHypoStackDiversity = minHypoStackDiversity;
}
/** set beam threshold, hypotheses in the stack must not be worse than
* this factor times the best score to be allowed in the stack
* \param beamThreshold minimum factor (typical number: 0.03)
*/
inline void SetBeamWidth(float beamWidth) {
m_beamWidth = beamWidth;
}
/** return score of the best hypothesis in the stack */
inline float GetBestScore() const {
return m_bestScore;
}
/** return worst allowable score */
inline float GetWorstScore() const {
return m_worstScore;
}
/** pruning, if too large.
* Pruning algorithm: find a threshold and delete all hypothesis below it.
* The threshold is chosen so that exactly newSize top items remain on the
* stack in fact, in situations where some of the hypothesis fell below
* m_beamWidth, the stack will contain less items.
* \param newSize maximum size */
void PruneToSize(size_t newSize);
//! return the hypothesis with best score. Used to get the translated at end of decoding
const Hypothesis *GetBestHypothesis() const;
//! return all hypothesis, sorted by descending score. Used in creation of N best list
std::vector<const Hypothesis*> GetSortedList() const;
std::vector<Hypothesis*> GetSortedListNOTCONST();
/** make all arcs in point to the equiv hypothesis that contains them.
* Ie update doubly linked list be hypo & arcs
*/
void CleanupArcList();
TO_STRING();
};
}
#endif