mosesdecoder/lm/kenlm_benchmark_main.cc

143 lines
4.7 KiB
C++
Raw Normal View History

#include "lm/model.hh"
#include "util/file_stream.hh"
#include "util/file.hh"
#include "util/file_piece.hh"
#include "util/usage.hh"
#include <stdint.h>
namespace {
template <class Model, class Width> void ConvertToBytes(const Model &model, int fd_in) {
util::FilePiece in(fd_in);
util::FileStream out(1);
Width width;
StringPiece word;
const Width end_sentence = (Width)model.GetVocabulary().EndSentence();
while (true) {
while (in.ReadWordSameLine(word)) {
width = (Width)model.GetVocabulary().Index(word);
out.write(&width, sizeof(Width));
}
if (!in.ReadLineOrEOF(word)) break;
out.write(&end_sentence, sizeof(Width));
}
}
template <class Model, class Width> void QueryFromBytes(const Model &model, int fd_in) {
lm::ngram::State state[3];
const lm::ngram::State *const begin_state = &model.BeginSentenceState();
const lm::ngram::State *next_state = begin_state;
Width kEOS = model.GetVocabulary().EndSentence();
Width buf[4096];
uint64_t completed = 0;
double loaded = util::CPUTime();
std::cout << "CPU_to_load: " << loaded << std::endl;
// Numerical precision: batch sums.
double total = 0.0;
2015-09-10 18:04:09 +03:00
while (std::size_t got = util::ReadOrEOF(fd_in, buf, sizeof(buf))) {
float sum = 0.0;
UTIL_THROW_IF2(got % sizeof(Width), "File size not a multiple of vocab id size " << sizeof(Width));
got /= sizeof(Width);
completed += got;
// Do even stuff first.
const Width *even_end = buf + (got & ~1);
// Alternating states
const Width *i;
for (i = buf; i != even_end;) {
sum += model.FullScore(*next_state, *i, state[1]).prob;
next_state = (*i++ == kEOS) ? begin_state : &state[1];
sum += model.FullScore(*next_state, *i, state[0]).prob;
next_state = (*i++ == kEOS) ? begin_state : &state[0];
}
// Odd corner case.
if (got & 1) {
sum += model.FullScore(*next_state, *i, state[2]).prob;
next_state = (*i++ == kEOS) ? begin_state : &state[2];
}
total += sum;
}
double after = util::CPUTime();
std::cerr << "Probability sum is " << total << std::endl;
std::cout << "Queries: " << completed << std::endl;
std::cout << "CPU_excluding_load: " << (after - loaded) << "\nCPU_per_query: " << ((after - loaded) / static_cast<double>(completed)) << std::endl;
std::cout << "RSSMax: " << util::RSSMax() << std::endl;
}
template <class Model, class Width> void DispatchFunction(const Model &model, bool query) {
if (query) {
QueryFromBytes<Model, Width>(model, 0);
} else {
ConvertToBytes<Model, Width>(model, 0);
}
}
template <class Model> void DispatchWidth(const char *file, bool query) {
lm::ngram::Config config;
config.load_method = util::READ;
std::cerr << "Using load_method = READ." << std::endl;
Model model(file, config);
lm::WordIndex bound = model.GetVocabulary().Bound();
if (bound <= 256) {
DispatchFunction<Model, uint8_t>(model, query);
} else if (bound <= 65536) {
DispatchFunction<Model, uint16_t>(model, query);
} else if (bound <= (1ULL << 32)) {
DispatchFunction<Model, uint32_t>(model, query);
} else {
DispatchFunction<Model, uint64_t>(model, query);
}
}
void Dispatch(const char *file, bool query) {
using namespace lm::ngram;
lm::ngram::ModelType model_type;
if (lm::ngram::RecognizeBinary(file, model_type)) {
switch(model_type) {
case PROBING:
DispatchWidth<lm::ngram::ProbingModel>(file, query);
break;
case REST_PROBING:
DispatchWidth<lm::ngram::RestProbingModel>(file, query);
break;
case TRIE:
DispatchWidth<lm::ngram::TrieModel>(file, query);
break;
case QUANT_TRIE:
DispatchWidth<lm::ngram::QuantTrieModel>(file, query);
break;
case ARRAY_TRIE:
DispatchWidth<lm::ngram::ArrayTrieModel>(file, query);
break;
case QUANT_ARRAY_TRIE:
DispatchWidth<lm::ngram::QuantArrayTrieModel>(file, query);
break;
default:
UTIL_THROW(util::Exception, "Unrecognized kenlm model type " << model_type);
}
} else {
UTIL_THROW(util::Exception, "Binarize before running benchmarks.");
}
}
} // namespace
int main(int argc, char *argv[]) {
if (argc != 3 || (strcmp(argv[1], "vocab") && strcmp(argv[1], "query"))) {
std::cerr
<< "Benchmark program for KenLM. Intended usage:\n"
<< "#Convert text to vocabulary ids offline. These ids are tied to a model.\n"
<< argv[0] << " vocab $model <$text >$text.vocab\n"
<< "#Ensure files are in RAM.\n"
<< "cat $text.vocab $model >/dev/null\n"
<< "#Timed query against the model.\n"
<< argv[0] << " query $model <$text.vocab\n";
return 1;
}
Dispatch(argv[2], !strcmp(argv[1], "query"));
return 0;
}