mosesdecoder/moses/LM/Implementation.cpp

518 lines
17 KiB
C++
Raw Normal View History

// $Id$
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <limits>
#include <iostream>
#include <memory>
#include <sstream>
2012-11-12 23:56:18 +04:00
#include "moses/FFState.h"
#include "Implementation.h"
#include "moses/TypeDef.h"
#include "moses/Util.h"
#include "moses/Manager.h"
#include "moses/FactorCollection.h"
#include "moses/Phrase.h"
#include "moses/StaticData.h"
#include "moses/ChartManager.h"
#include "moses/ChartHypothesis.h"
#include "util/check.hh"
using namespace std;
namespace Moses
{
void LanguageModelImplementation::ShiftOrPush(std::vector<const Word*> &contextFactor, const Word &word) const
{
if (contextFactor.size() < GetNGramOrder()) {
contextFactor.push_back(&word);
} else {
// shift
for (size_t currNGramOrder = 0 ; currNGramOrder < GetNGramOrder() - 1 ; currNGramOrder++) {
contextFactor[currNGramOrder] = contextFactor[currNGramOrder + 1];
}
contextFactor[GetNGramOrder() - 1] = &word;
}
}
LMResult LanguageModelImplementation::GetValueGivenState(
const std::vector<const Word*> &contextFactor,
FFState &state) const
{
return GetValueForgotState(contextFactor, state);
}
void LanguageModelImplementation::GetState(
const std::vector<const Word*> &contextFactor,
FFState &state) const
{
GetValueForgotState(contextFactor, state);
}
// Calculate score of a phrase.
void LanguageModelImplementation::CalcScore(const Phrase &phrase, float &fullScore, float &ngramScore, size_t &oovCount) const {
fullScore = 0;
ngramScore = 0;
oovCount = 0;
size_t phraseSize = phrase.GetSize();
if (!phraseSize) return;
vector<const Word*> contextFactor;
contextFactor.reserve(GetNGramOrder());
std::auto_ptr<FFState> state(NewState((phrase.GetWord(0) == GetSentenceStartArray()) ?
GetBeginSentenceState() : GetNullContextState()));
size_t currPos = 0;
while (currPos < phraseSize) {
const Word &word = phrase.GetWord(currPos);
if (word.IsNonTerminal()) {
// do nothing. reset ngram. needed to score target phrases during pt loading in chart decoding
if (!contextFactor.empty()) {
// TODO: state operator= ?
state.reset(NewState(GetNullContextState()));
contextFactor.clear();
}
} else {
ShiftOrPush(contextFactor, word);
CHECK(contextFactor.size() <= GetNGramOrder());
if (word == GetSentenceStartArray()) {
// do nothing, don't include prob for <s> unigram
if (currPos != 0) {
2011-12-01 17:21:55 +04:00
std::cerr << "Either your data contains <s> in a position other than the first word or your language model is missing <s>. Did you build your ARPA using IRSTLM and forget to run add-start-end.sh?" << std::endl;
abort();
}
} else {
LMResult result = GetValueGivenState(contextFactor, *state);
fullScore += result.score;
if (contextFactor.size() == GetNGramOrder())
ngramScore += result.score;
if (result.unknown) ++oovCount;
}
}
currPos++;
}
}
FFState *LanguageModelImplementation::Evaluate(const Hypothesis &hypo, const FFState *ps, ScoreComponentCollection *out, const LanguageModel *feature) const {
// In this function, we only compute the LM scores of n-grams that overlap a
// phrase boundary. Phrase-internal scores are taken directly from the
// translation option.
// In the case of unigram language models, there is no overlap, so we don't
// need to do anything.
if(GetNGramOrder() <= 1)
return NULL;
clock_t t = 0;
IFVERBOSE(2) {
t = clock(); // track time
}
// Empty phrase added? nothing to be done
if (hypo.GetCurrTargetLength() == 0)
return ps ? NewState(ps) : NULL;
const size_t currEndPos = hypo.GetCurrTargetWordsRange().GetEndPos();
const size_t startPos = hypo.GetCurrTargetWordsRange().GetStartPos();
// 1st n-gram
vector<const Word*> contextFactor(GetNGramOrder());
size_t index = 0;
for (int currPos = (int) startPos - (int) GetNGramOrder() + 1 ; currPos <= (int) startPos ; currPos++) {
if (currPos >= 0)
contextFactor[index++] = &hypo.GetWord(currPos);
else {
contextFactor[index++] = &GetSentenceStartArray();
}
}
FFState *res = NewState(ps);
float lmScore = ps ? GetValueGivenState(contextFactor, *res).score : GetValueForgotState(contextFactor, *res).score;
// main loop
size_t endPos = std::min(startPos + GetNGramOrder() - 2
, currEndPos);
for (size_t currPos = startPos + 1 ; currPos <= endPos ; currPos++) {
// shift all args down 1 place
for (size_t i = 0 ; i < GetNGramOrder() - 1 ; i++)
contextFactor[i] = contextFactor[i + 1];
// add last factor
contextFactor.back() = &hypo.GetWord(currPos);
lmScore += GetValueGivenState(contextFactor, *res).score;
}
// end of sentence
if (hypo.IsSourceCompleted()) {
const size_t size = hypo.GetSize();
contextFactor.back() = &GetSentenceEndArray();
for (size_t i = 0 ; i < GetNGramOrder() - 1 ; i ++) {
int currPos = (int)(size - GetNGramOrder() + i + 1);
if (currPos < 0)
contextFactor[i] = &GetSentenceStartArray();
else
contextFactor[i] = &hypo.GetWord((size_t)currPos);
}
lmScore += GetValueForgotState(contextFactor, *res).score;
}
else
{
if (endPos < currEndPos) {
//need to get the LM state (otherwise the last LM state is fine)
for (size_t currPos = endPos+1; currPos <= currEndPos; currPos++) {
for (size_t i = 0 ; i < GetNGramOrder() - 1 ; i++)
contextFactor[i] = contextFactor[i + 1];
contextFactor.back() = &hypo.GetWord(currPos);
}
GetState(contextFactor, *res);
}
}
if (feature->OOVFeatureEnabled()) {
vector<float> scores(2);
scores[0] = lmScore;
scores[1] = 0;
out->PlusEquals(feature, scores);
} else {
out->PlusEquals(feature, lmScore);
}
IFVERBOSE(2) {
hypo.GetManager().GetSentenceStats().AddTimeCalcLM( clock()-t );
}
return res;
}
namespace {
// This is the FFState used by LanguageModelImplementation::EvaluateChart.
// Though svn blame goes back to heafield, don't blame me. I just moved this from LanguageModelChartState.cpp and ChartHypothesis.cpp.
class LanguageModelChartState : public FFState
{
private:
float m_prefixScore;
FFState* m_lmRightContext;
Phrase m_contextPrefix, m_contextSuffix;
size_t m_numTargetTerminals; // This isn't really correct except for the surviving hypothesis
const ChartHypothesis &m_hypo;
/** Construct the prefix string of up to specified size
* \param ret prefix string
* \param size maximum size (typically max lm context window)
*/
size_t CalcPrefix(const ChartHypothesis &hypo, int featureID, Phrase &ret, size_t size) const
{
const TargetPhrase &target = hypo.GetCurrTargetPhrase();
const AlignmentInfo::NonTermIndexMap &nonTermIndexMap =
target.GetAlignNonTerm().GetNonTermIndexMap();
// loop over the rule that is being applied
for (size_t pos = 0; pos < target.GetSize(); ++pos) {
const Word &word = target.GetWord(pos);
// for non-terminals, retrieve it from underlying hypothesis
if (word.IsNonTerminal()) {
size_t nonTermInd = nonTermIndexMap[pos];
const ChartHypothesis *prevHypo = hypo.GetPrevHypo(nonTermInd);
size = static_cast<const LanguageModelChartState*>(prevHypo->GetFFState(featureID))->CalcPrefix(*prevHypo, featureID, ret, size);
}
// for words, add word
else {
ret.AddWord(target.GetWord(pos));
size--;
}
// finish when maximum length reached
if (size==0)
break;
}
return size;
}
/** Construct the suffix phrase of up to specified size
* will always be called after the construction of prefix phrase
* \param ret suffix phrase
* \param size maximum size of suffix
*/
size_t CalcSuffix(const ChartHypothesis &hypo, int featureID, Phrase &ret, size_t size) const
{
CHECK(m_contextPrefix.GetSize() <= m_numTargetTerminals);
// special handling for small hypotheses
// does the prefix match the entire hypothesis string? -> just copy prefix
if (m_contextPrefix.GetSize() == m_numTargetTerminals) {
size_t maxCount = std::min(m_contextPrefix.GetSize(), size);
size_t pos= m_contextPrefix.GetSize() - 1;
for (size_t ind = 0; ind < maxCount; ++ind) {
const Word &word = m_contextPrefix.GetWord(pos);
ret.PrependWord(word);
--pos;
}
size -= maxCount;
return size;
}
// construct suffix analogous to prefix
else {
const TargetPhrase& target = hypo.GetCurrTargetPhrase();
const AlignmentInfo::NonTermIndexMap &nonTermIndexMap =
target.GetAlignNonTerm().GetNonTermIndexMap();
for (int pos = (int) target.GetSize() - 1; pos >= 0 ; --pos) {
const Word &word = target.GetWord(pos);
if (word.IsNonTerminal()) {
size_t nonTermInd = nonTermIndexMap[pos];
const ChartHypothesis *prevHypo = hypo.GetPrevHypo(nonTermInd);
size = static_cast<const LanguageModelChartState*>(prevHypo->GetFFState(featureID))->CalcSuffix(*prevHypo, featureID, ret, size);
}
else {
ret.PrependWord(hypo.GetCurrTargetPhrase().GetWord(pos));
size--;
}
if (size==0)
break;
}
return size;
}
}
public:
LanguageModelChartState(const ChartHypothesis &hypo, int featureID, size_t order)
:m_lmRightContext(NULL)
2011-11-21 14:49:26 +04:00
,m_contextPrefix(order - 1)
,m_contextSuffix( order - 1)
,m_hypo(hypo)
{
m_numTargetTerminals = hypo.GetCurrTargetPhrase().GetNumTerminals();
for (std::vector<const ChartHypothesis*>::const_iterator i = hypo.GetPrevHypos().begin(); i != hypo.GetPrevHypos().end(); ++i) {
// keep count of words (= length of generated string)
m_numTargetTerminals += static_cast<const LanguageModelChartState*>((*i)->GetFFState(featureID))->GetNumTargetTerminals();
}
CalcPrefix(hypo, featureID, m_contextPrefix, order - 1);
CalcSuffix(hypo, featureID, m_contextSuffix, order - 1);
}
~LanguageModelChartState() {
delete m_lmRightContext;
}
void Set(float prefixScore, FFState *rightState) {
m_prefixScore = prefixScore;
m_lmRightContext = rightState;
}
float GetPrefixScore() const { return m_prefixScore; }
FFState* GetRightContext() const { return m_lmRightContext; }
size_t GetNumTargetTerminals() const {
return m_numTargetTerminals;
}
const Phrase &GetPrefix() const {
return m_contextPrefix;
}
const Phrase &GetSuffix() const {
return m_contextSuffix;
}
int Compare(const FFState& o) const {
const LanguageModelChartState &other =
dynamic_cast<const LanguageModelChartState &>( o );
// prefix
if (m_hypo.GetCurrSourceRange().GetStartPos() > 0) // not for "<s> ..."
{
int ret = GetPrefix().Compare(other.GetPrefix());
if (ret != 0)
return ret;
}
// suffix
size_t inputSize = m_hypo.GetManager().GetSource().GetSize();
if (m_hypo.GetCurrSourceRange().GetEndPos() < inputSize - 1)// not for "... </s>"
{
int ret = other.GetRightContext()->Compare(*m_lmRightContext);
if (ret != 0)
return ret;
}
return 0;
}
};
} // namespace
FFState* LanguageModelImplementation::EvaluateChart(const ChartHypothesis& hypo, int featureID, ScoreComponentCollection* out, const LanguageModel *scorer) const {
LanguageModelChartState *ret = new LanguageModelChartState(hypo, featureID, GetNGramOrder());
// data structure for factored context phrase (history and predicted word)
vector<const Word*> contextFactor;
contextFactor.reserve(GetNGramOrder());
// initialize language model context state
FFState *lmState = NewState( GetNullContextState() );
// initial language model scores
float prefixScore = 0.0; // not yet final for initial words (lack context)
float finalizedScore = 0.0; // finalized, has sufficient context
// get index map for underlying hypotheses
const TargetPhrase &target = hypo.GetCurrTargetPhrase();
const AlignmentInfo::NonTermIndexMap &nonTermIndexMap =
hypo.GetCurrTargetPhrase().GetAlignNonTerm().GetNonTermIndexMap();
// loop over rule
for (size_t phrasePos = 0, wordPos = 0;
phrasePos < hypo.GetCurrTargetPhrase().GetSize();
phrasePos++)
{
// consult rule for either word or non-terminal
const Word &word = hypo.GetCurrTargetPhrase().GetWord(phrasePos);
// regular word
if (!word.IsNonTerminal())
{
ShiftOrPush(contextFactor, word);
// beginning of sentence symbol <s>? -> just update state
if (word == GetSentenceStartArray())
2012-06-13 18:56:53 +04:00
{
CHECK(phrasePos == 0);
delete lmState;
lmState = NewState( GetBeginSentenceState() );
}
// score a regular word added by the rule
else
{
updateChartScore( &prefixScore, &finalizedScore, UntransformLMScore(GetValueGivenState(contextFactor, *lmState).score), ++wordPos );
}
}
// non-terminal, add phrase from underlying hypothesis
else
{
// look up underlying hypothesis
size_t nonTermIndex = nonTermIndexMap[phrasePos];
const ChartHypothesis *prevHypo = hypo.GetPrevHypo(nonTermIndex);
const LanguageModelChartState* prevState =
static_cast<const LanguageModelChartState*>(prevHypo->GetFFState(featureID));
size_t subPhraseLength = prevState->GetNumTargetTerminals();
// special case: rule starts with non-terminal -> copy everything
if (phrasePos == 0) {
// get prefixScore and finalizedScore
prefixScore = prevState->GetPrefixScore();
finalizedScore = prevHypo->GetScoreBreakdown().GetScoresForProducer(scorer)[0] - prefixScore;
// get language model state
delete lmState;
lmState = NewState( prevState->GetRightContext() );
// push suffix
int suffixPos = prevState->GetSuffix().GetSize() - (GetNGramOrder()-1);
if (suffixPos < 0) suffixPos = 0; // push all words if less than order
for(;(size_t)suffixPos < prevState->GetSuffix().GetSize(); suffixPos++)
{
const Word &word = prevState->GetSuffix().GetWord(suffixPos);
ShiftOrPush(contextFactor, word);
wordPos++;
}
}
// internal non-terminal
else
{
// score its prefix
for(size_t prefixPos = 0;
prefixPos < GetNGramOrder()-1 // up to LM order window
&& prefixPos < subPhraseLength; // up to length
prefixPos++)
{
const Word &word = prevState->GetPrefix().GetWord(prefixPos);
ShiftOrPush(contextFactor, word);
updateChartScore( &prefixScore, &finalizedScore, UntransformLMScore(GetValueGivenState(contextFactor, *lmState).score), ++wordPos );
}
// check if we are dealing with a large sub-phrase
if (subPhraseLength > GetNGramOrder() - 1)
{
// add its finalized language model score
finalizedScore +=
prevHypo->GetScoreBreakdown().GetScoresForProducer(scorer)[0] // full score
- prevState->GetPrefixScore(); // - prefix score
// copy language model state
delete lmState;
lmState = NewState( prevState->GetRightContext() );
// push its suffix
size_t remainingWords = subPhraseLength - (GetNGramOrder()-1);
if (remainingWords > GetNGramOrder()-1) {
// only what is needed for the history window
remainingWords = GetNGramOrder()-1;
}
for(size_t suffixPos = prevState->GetSuffix().GetSize() - remainingWords;
suffixPos < prevState->GetSuffix().GetSize();
suffixPos++) {
const Word &word = prevState->GetSuffix().GetWord(suffixPos);
ShiftOrPush(contextFactor, word);
}
wordPos += subPhraseLength;
}
}
}
}
// assign combined score to score breakdown
out->Assign(scorer, prefixScore + finalizedScore);
ret->Set(prefixScore, lmState);
return ret;
}
void LanguageModelImplementation::updateChartScore(float *prefixScore, float *finalizedScore, float score, size_t wordPos) const {
if (wordPos < GetNGramOrder()) {
*prefixScore += score;
}
else {
*finalizedScore += score;
}
}
}