mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-26 21:42:19 +03:00
add nplm wrapper from Kenneth's kenlm repo
This commit is contained in:
parent
8ef136a57c
commit
0d8d77e3da
3
lm/wrappers/README
Normal file
3
lm/wrappers/README
Normal file
@ -0,0 +1,3 @@
|
||||
This directory is for wrappers around other people's LMs, presenting an interface similar to KenLM's. You will need to have their LM installed.
|
||||
|
||||
NPLM is a work in progress.
|
90
lm/wrappers/nplm.cc
Normal file
90
lm/wrappers/nplm.cc
Normal file
@ -0,0 +1,90 @@
|
||||
#include "lm/wrappers/nplm.hh"
|
||||
#include "util/exception.hh"
|
||||
#include "util/file.hh"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include "neuralLM.h"
|
||||
|
||||
namespace lm {
|
||||
namespace np {
|
||||
|
||||
Vocabulary::Vocabulary(const nplm::vocabulary &vocab)
|
||||
: base::Vocabulary(vocab.lookup_word("<s>"), vocab.lookup_word("</s>"), vocab.lookup_word("<unk>")),
|
||||
vocab_(vocab), null_word_(vocab.lookup_word("<null>")) {}
|
||||
|
||||
Vocabulary::~Vocabulary() {}
|
||||
|
||||
WordIndex Vocabulary::Index(const std::string &str) const {
|
||||
return vocab_.lookup_word(str);
|
||||
}
|
||||
|
||||
bool Model::Recognize(const std::string &name) {
|
||||
try {
|
||||
util::scoped_fd file(util::OpenReadOrThrow(name.c_str()));
|
||||
char magic_check[16];
|
||||
util::ReadOrThrow(file.get(), magic_check, sizeof(magic_check));
|
||||
const char nnlm_magic[] = "\\config\nversion ";
|
||||
return !memcmp(magic_check, nnlm_magic, 16);
|
||||
} catch (const util::Exception &) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
Model::Model(const std::string &file, std::size_t cache)
|
||||
: base_instance_(new nplm::neuralLM(file)), vocab_(base_instance_->get_vocabulary()), cache_size_(cache) {
|
||||
UTIL_THROW_IF(base_instance_->get_order() > NPLM_MAX_ORDER, util::Exception, "This NPLM has order " << (unsigned int)base_instance_->get_order() << " but the KenLM wrapper was compiled with " << NPLM_MAX_ORDER << ". Change the defintion of NPLM_MAX_ORDER and recompile.");
|
||||
// log10 compatible with backoff models.
|
||||
base_instance_->set_log_base(10.0);
|
||||
State begin_sentence, null_context;
|
||||
std::fill(begin_sentence.words, begin_sentence.words + NPLM_MAX_ORDER - 1, base_instance_->lookup_word("<s>"));
|
||||
null_word_ = base_instance_->lookup_word("<null>");
|
||||
std::fill(null_context.words, null_context.words + NPLM_MAX_ORDER - 1, null_word_);
|
||||
|
||||
Init(begin_sentence, null_context, vocab_, base_instance_->get_order());
|
||||
}
|
||||
|
||||
Model::~Model() {}
|
||||
|
||||
FullScoreReturn Model::FullScore(const State &from, const WordIndex new_word, State &out_state) const {
|
||||
nplm::neuralLM *lm = backend_.get();
|
||||
if (!lm) {
|
||||
lm = new nplm::neuralLM(*base_instance_);
|
||||
backend_.reset(lm);
|
||||
lm->set_cache(cache_size_);
|
||||
}
|
||||
// State is in natural word order.
|
||||
FullScoreReturn ret;
|
||||
for (int i = 0; i < lm->get_order() - 1; ++i) {
|
||||
lm->staging_ngram()(i) = from.words[i];
|
||||
}
|
||||
lm->staging_ngram()(lm->get_order() - 1) = new_word;
|
||||
ret.prob = lm->lookup_from_staging();
|
||||
// Always say full order.
|
||||
ret.ngram_length = lm->get_order();
|
||||
// Shift everything down by one.
|
||||
memcpy(out_state.words, from.words + 1, sizeof(WordIndex) * (lm->get_order() - 2));
|
||||
out_state.words[lm->get_order() - 2] = new_word;
|
||||
// Fill in trailing words with zeros so state comparison works.
|
||||
memset(out_state.words + lm->get_order() - 1, 0, sizeof(WordIndex) * (NPLM_MAX_ORDER - lm->get_order()));
|
||||
return ret;
|
||||
}
|
||||
|
||||
// TODO: optimize with direct call?
|
||||
FullScoreReturn Model::FullScoreForgotState(const WordIndex *context_rbegin, const WordIndex *context_rend, const WordIndex new_word, State &out_state) const {
|
||||
// State is in natural word order. The API here specifies reverse order.
|
||||
std::size_t state_length = std::min<std::size_t>(Order() - 1, context_rend - context_rbegin);
|
||||
State state;
|
||||
// Pad with null words.
|
||||
for (lm::WordIndex *i = state.words; i < state.words + Order() - 1 - state_length; ++i) {
|
||||
*i = null_word_;
|
||||
}
|
||||
// Put new words at the end.
|
||||
std::reverse_copy(context_rbegin, context_rbegin + state_length, state.words + Order() - 1 - state_length);
|
||||
return FullScore(state, new_word, out_state);
|
||||
}
|
||||
|
||||
} // namespace np
|
||||
} // namespace lm
|
83
lm/wrappers/nplm.hh
Normal file
83
lm/wrappers/nplm.hh
Normal file
@ -0,0 +1,83 @@
|
||||
#ifndef LM_WRAPPERS_NPLM_H
|
||||
#define LM_WRAPPERS_NPLM_H
|
||||
|
||||
#include "lm/facade.hh"
|
||||
#include "lm/max_order.hh"
|
||||
#include "util/string_piece.hh"
|
||||
|
||||
#include <boost/thread/tss.hpp>
|
||||
#include <boost/scoped_ptr.hpp>
|
||||
|
||||
/* Wrapper to NPLM "by Ashish Vaswani, with contributions from David Chiang
|
||||
* and Victoria Fossum."
|
||||
* http://nlg.isi.edu/software/nplm/
|
||||
*/
|
||||
|
||||
namespace nplm {
|
||||
class vocabulary;
|
||||
class neuralLM;
|
||||
} // namespace nplm
|
||||
|
||||
namespace lm {
|
||||
namespace np {
|
||||
|
||||
class Vocabulary : public base::Vocabulary {
|
||||
public:
|
||||
Vocabulary(const nplm::vocabulary &vocab);
|
||||
|
||||
~Vocabulary();
|
||||
|
||||
WordIndex Index(const std::string &str) const;
|
||||
|
||||
// TODO: lobby them to support StringPiece
|
||||
WordIndex Index(const StringPiece &str) const {
|
||||
return Index(std::string(str.data(), str.size()));
|
||||
}
|
||||
|
||||
lm::WordIndex NullWord() const { return null_word_; }
|
||||
|
||||
private:
|
||||
const nplm::vocabulary &vocab_;
|
||||
|
||||
const lm::WordIndex null_word_;
|
||||
};
|
||||
|
||||
// Sorry for imposing my limitations on your code.
|
||||
#define NPLM_MAX_ORDER 7
|
||||
|
||||
struct State {
|
||||
WordIndex words[NPLM_MAX_ORDER - 1];
|
||||
};
|
||||
|
||||
class Model : public lm::base::ModelFacade<Model, State, Vocabulary> {
|
||||
private:
|
||||
typedef lm::base::ModelFacade<Model, State, Vocabulary> P;
|
||||
|
||||
public:
|
||||
// Does this look like an NPLM?
|
||||
static bool Recognize(const std::string &file);
|
||||
|
||||
explicit Model(const std::string &file, std::size_t cache_size = 1 << 20);
|
||||
|
||||
~Model();
|
||||
|
||||
FullScoreReturn FullScore(const State &from, const WordIndex new_word, State &out_state) const;
|
||||
|
||||
FullScoreReturn FullScoreForgotState(const WordIndex *context_rbegin, const WordIndex *context_rend, const WordIndex new_word, State &out_state) const;
|
||||
|
||||
private:
|
||||
boost::scoped_ptr<nplm::neuralLM> base_instance_;
|
||||
|
||||
mutable boost::thread_specific_ptr<nplm::neuralLM> backend_;
|
||||
|
||||
Vocabulary vocab_;
|
||||
|
||||
lm::WordIndex null_word_;
|
||||
|
||||
const std::size_t cache_size_;
|
||||
};
|
||||
|
||||
} // namespace np
|
||||
} // namespace lm
|
||||
|
||||
#endif // LM_WRAPPERS_NPLM_H
|
Loading…
Reference in New Issue
Block a user