implement EvaluateChart() for TargetNgramFeature, add sparse features to chart decoder nbest list

This commit is contained in:
Eva Hasler 2011-12-06 21:33:23 +00:00
parent 6f0cc81aa4
commit 1dcc3c3c6f
7 changed files with 531 additions and 59 deletions

View File

@ -47,6 +47,9 @@ POSSIBILITY OF SUCH DAMAGE.
#include "ChartHypothesis.h"
#include "DotChart.h"
#include <boost/algorithm/string.hpp>
#include "FeatureVector.h"
using namespace std;
using namespace Moses;
@ -345,7 +348,7 @@ void IOWrapper::OutputNBestList(const ChartTrellisPathList &nBestList, const Cha
// print the surface factor of the translation
out << translationId << " ||| ";
OutputSurface(out, outputPhrase, m_outputFactorOrder, false);
out << " |||";
out << " ||| ";
// print the scores in a hardwired order
// before each model type, the corresponding command-line-like name must be emitted
@ -362,26 +365,23 @@ void IOWrapper::OutputNBestList(const ChartTrellisPathList &nBestList, const Cha
}
}
std::string lastName = "";
// translation components
const vector<PhraseDictionaryFeature*>& pds = system->GetPhraseDictionaries();
if (pds.size() > 0) {
for( size_t i=0; i<pds.size(); i++ ) {
size_t pd_numinputscore = pds[i]->GetNumInputScores();
vector<float> scores = path.GetScoreBreakdown().GetScoresForProducer( pds[i] );
for (size_t j = 0; j<scores.size(); ++j){
if (labeledOutput && (i == 0) ){
if ((j == 0) || (j == pd_numinputscore)){
lastName = pds[i]->GetScoreProducerWeightShortName(j);
out << " " << lastName << ":";
}
}
out << " " << scores[j];
}
size_t pd_numinputscore = pds[i]->GetNumInputScores();
vector<float> scores = path.GetScoreBreakdown().GetScoresForProducer( pds[i] );
for (size_t j = 0; j<scores.size(); ++j){
if (labeledOutput && (i == 0) ){
if ((j == 0) || (j == pd_numinputscore)){
lastName = pds[i]->GetScoreProducerWeightShortName(j);
out << " " << lastName << ":";
}
}
out << " " << scores[j];
}
}
}
@ -393,26 +393,36 @@ void IOWrapper::OutputNBestList(const ChartTrellisPathList &nBestList, const Cha
// generation
const vector<GenerationDictionary*>& gds = system->GetGenerationDictionaries();
if (gds.size() > 0) {
for( size_t i=0; i<gds.size(); i++ ) {
size_t pd_numinputscore = gds[i]->GetNumInputScores();
vector<float> scores = path.GetScoreBreakdown().GetScoresForProducer( gds[i] );
for (size_t j = 0; j<scores.size(); ++j){
if (labeledOutput && (i == 0) ){
if ((j == 0) || (j == pd_numinputscore)){
lastName = gds[i]->GetScoreProducerWeightShortName(j);
out << " " << lastName << ":";
}
}
out << " " << scores[j];
}
size_t pd_numinputscore = gds[i]->GetNumInputScores();
vector<float> scores = path.GetScoreBreakdown().GetScoresForProducer( gds[i] );
for (size_t j = 0; j<scores.size(); ++j){
if (labeledOutput && (i == 0) ){
if ((j == 0) || (j == pd_numinputscore)){
lastName = gds[i]->GetScoreProducerWeightShortName(j);
out << " " << lastName << ":";
}
}
out << " " << scores[j];
}
}
}
// output sparse features
lastName = "";
const vector<const StatefulFeatureFunction*>& sff = system->GetStatefulFeatureFunctions();
for( size_t i=0; i<sff.size(); i++ )
if (sff[i]->GetNumScoreComponents() == ScoreProducer::unlimited)
OutputSparseFeatureScores( out, path, sff[i], lastName );
const vector<const StatelessFeatureFunction*>& slf = system->GetStatelessFeatureFunctions();
for( size_t i=0; i<slf.size(); i++ )
if (sff[i]->GetNumScoreComponents() == ScoreProducer::unlimited)
OutputSparseFeatureScores( out, path, slf[i], lastName );
// total
out << " |||" << path.GetTotalScore();
out << " ||| " << path.GetTotalScore();
/*
if (includeAlignment) {
@ -443,6 +453,32 @@ void IOWrapper::OutputNBestList(const ChartTrellisPathList &nBestList, const Cha
m_nBestOutputCollector->Write(translationId, out.str());
}
void IOWrapper::OutputSparseFeatureScores( std::ostream& out, const ChartTrellisPath &path, const FeatureFunction *ff, std::string &lastName )
{
const StaticData &staticData = StaticData::Instance();
bool labeledOutput = staticData.IsLabeledNBestList();
const FVector scores = path.GetScoreBreakdown().GetVectorForProducer( ff );
// report weighted aggregate
if (! ff->GetSparseFeatureReporting()) {
const FVector &weights = staticData.GetAllWeights().GetScoresVector();
if (labeledOutput && !boost::contains(ff->GetScoreProducerDescription(), ":"))
out << " " << ff->GetScoreProducerWeightShortName() << ":";
out << " " << scores.inner_product(weights);
}
// report each feature
else {
for(FVector::FNVmap::const_iterator i = scores.cbegin(); i != scores.cend(); i++) {
if (i->second != 0) { // do not report zero-valued features
if (labeledOutput)
out << " " << i->first << ":";
out << " " << i->second;
}
}
}
}
void IOWrapper::FixPrecision(std::ostream &stream, size_t size)
{
stream.setf(std::ios::fixed);

View File

@ -44,6 +44,8 @@ POSSIBILITY OF SUCH DAMAGE.
#include "OutputCollector.h"
#include "ChartHypothesis.h"
#include "ChartTrellisPath.h"
namespace Moses
{
class FactorCollection;
@ -82,6 +84,7 @@ public:
void OutputBestHypo(const Moses::ChartHypothesis *hypo, long translationId, bool reportSegmentation, bool reportAllFactors);
void OutputBestHypo(const std::vector<const Moses::Factor*>& mbrBestHypo, long translationId, bool reportSegmentation, bool reportAllFactors);
void OutputNBestList(const Moses::ChartTrellisPathList &nBestList, const Moses::ChartHypothesis *bestHypo, const Moses::TranslationSystem* system, long translationId);
void OutputSparseFeatureScores(std::ostream& out, const Moses::ChartTrellisPath &path, const Moses::FeatureFunction *ff, std::string &lastName);
void OutputDetailedTranslationReport(const Moses::ChartHypothesis *hypo, long translationId);
void Backtrack(const Moses::ChartHypothesis *hypo);

View File

@ -290,6 +290,10 @@ namespace Moses {
return (m_fv->m_features[m_name] += lhs);
}
FValue operator -=(FValue lhs) {
return (m_fv->m_features[m_name] -= lhs);
}
private:
FValue m_tmp;

View File

@ -149,6 +149,13 @@ public:
m_scores -= rhs.m_scores;
}
//For features which have an unbounded number of components
void MinusEquals(const ScoreProducer*sp, const std::string& name, float score)
{
assert(sp->GetNumScoreComponents() == ScoreProducer::unlimited);
FName fname(sp->GetScoreProducerDescription(),name);
m_scores[fname] -= score;
}
//! Add scores from a single ScoreProducer only
//! The length of scores must be equal to the number of score components

View File

@ -1459,14 +1459,12 @@ bool StaticData::LoadReferences()
bool StaticData::LoadDiscrimLMFeature()
{
cerr << "Loading discriminative language models.. ";
// only load if specified
// only load if specified
const vector<string> &wordFile = m_parameter->GetParam("discrim-lmodel-file");
if (wordFile.empty()) {
return true;
}
cerr << wordFile.size() << " models" << endl;
cerr << "Loading " << wordFile.size() << " discriminative language model(s).." << endl;
// if this weight is specified, the sparse DLM weights will be scaled with an additional weight
vector<string> dlmWeightStr = m_parameter->GetParam("weight-dlm");

View File

@ -3,6 +3,7 @@
#include "TargetPhrase.h"
#include "Hypothesis.h"
#include "ScoreComponentCollection.h"
#include "ChartHypothesis.h"
namespace Moses {
@ -12,25 +13,25 @@ int TargetNgramState::Compare(const FFState& other) const {
const TargetNgramState& rhs = dynamic_cast<const TargetNgramState&>(other);
int result;
if (m_words.size() == rhs.m_words.size()) {
for (size_t i = 0; i < m_words.size(); ++i) {
result = Word::Compare(m_words[i],rhs.m_words[i]);
if (result != 0) return result;
}
for (size_t i = 0; i < m_words.size(); ++i) {
result = Word::Compare(m_words[i],rhs.m_words[i]);
if (result != 0) return result;
}
return 0;
}
else if (m_words.size() < rhs.m_words.size()) {
for (size_t i = 0; i < m_words.size(); ++i) {
result = Word::Compare(m_words[i],rhs.m_words[i]);
if (result != 0) return result;
}
return -1;
for (size_t i = 0; i < m_words.size(); ++i) {
result = Word::Compare(m_words[i],rhs.m_words[i]);
if (result != 0) return result;
}
return -1;
}
else {
for (size_t i = 0; i < rhs.m_words.size(); ++i) {
result = Word::Compare(m_words[i],rhs.m_words[i]);
if (result != 0) return result;
}
return 1;
for (size_t i = 0; i < rhs.m_words.size(); ++i) {
result = Word::Compare(m_words[i],rhs.m_words[i]);
if (result != 0) return result;
}
return 1;
}
}
@ -45,7 +46,7 @@ bool TargetNgramFeature::Load(const std::string &filePath)
std::string line;
m_vocab.insert(BOS_);
m_vocab.insert(BOS_);
m_vocab.insert(EOS_);
while (getline(inFile, line)) {
m_vocab.insert(line);
}
@ -54,7 +55,6 @@ bool TargetNgramFeature::Load(const std::string &filePath)
return true;
}
string TargetNgramFeature::GetScoreProducerWeightShortName(unsigned) const
{
return "dlmn";
@ -65,7 +65,6 @@ size_t TargetNgramFeature::GetNumInputScores() const
return 0;
}
const FFState* TargetNgramFeature::EmptyHypothesisState(const InputType &/*input*/) const
{
vector<Word> bos(1,m_bos);
@ -177,5 +176,254 @@ void TargetNgramFeature::appendNgram(const Word& word, bool& skip, string& ngram
ngram.append(":");
}
}
FFState* TargetNgramFeature::EvaluateChart(const ChartHypothesis& cur_hypo, int featureID, ScoreComponentCollection* accumulator) const
{
TargetNgramChartState *ret = new TargetNgramChartState(cur_hypo, featureID, GetNGramOrder());
// data structure for factored context phrase (history and predicted word)
vector<const Word*> contextFactor;
contextFactor.reserve(GetNGramOrder());
// initialize language model context state
FFState *lmState = NewState( GetNullContextState() );
// get index map for underlying hypotheses
const AlignmentInfo::NonTermIndexMap &nonTermIndexMap =
cur_hypo.GetCurrTargetPhrase().GetAlignmentInfo().GetNonTermIndexMap();
// loop over rule
bool makePrefix = false;
bool makeSuffix = false;
bool beforeSubphrase = true;
size_t terminalsBeforeSubphrase = 0;
size_t terminalsAfterSubphrase = 0;
for (size_t phrasePos = 0, wordPos = 0;
phrasePos < cur_hypo.GetCurrTargetPhrase().GetSize();
phrasePos++)
{
// consult rule for either word or non-terminal
const Word &word = cur_hypo.GetCurrTargetPhrase().GetWord(phrasePos);
// cerr << "word: " << word << endl;
// regular word
if (!word.IsNonTerminal())
{
if (phrasePos==0)
makePrefix = true;
contextFactor.push_back(&word);
// beginning of sentence symbol <s>?
if (word.GetString(GetFactorType(), false).compare("<s>") == 0)
{
assert(phrasePos == 0);
delete lmState;
lmState = NewState( GetBeginSentenceState() );
terminalsBeforeSubphrase++;
}
// end of sentence symbol </s>?
else if (word.GetString(GetFactorType(), false).compare("</s>") == 0) {
terminalsAfterSubphrase++;
}
// everything else
else {
string curr_ngram = word.GetString(GetFactorType(), false);
// cerr << "ngram: " << curr_ngram << endl;
accumulator->PlusEquals(this,curr_ngram,1);
}
}
// non-terminal, add phrase from underlying hypothesis
else
{
// look up underlying hypothesis
size_t nonTermIndex = nonTermIndexMap[phrasePos];
const ChartHypothesis *prevHypo = cur_hypo.GetPrevHypo(nonTermIndex);
const TargetNgramChartState* prevState =
static_cast<const TargetNgramChartState*>(prevHypo->GetFFState(featureID));
size_t subPhraseLength = prevState->GetNumTargetTerminals();
if (subPhraseLength==1) {
if (beforeSubphrase)
terminalsBeforeSubphrase++;
else
terminalsAfterSubphrase++;
}
else {
beforeSubphrase = false;
}
// special case: rule starts with non-terminal -> copy everything
if (phrasePos == 0) {
if (subPhraseLength == 1)
makePrefix = true;
// get language model state
delete lmState;
lmState = NewState( prevState->GetRightContext() );
// push suffix
// cerr << "suffix of NT in the beginning" << endl;
int suffixPos = prevState->GetSuffix().GetSize() - (GetNGramOrder()-1);
if (suffixPos < 0) suffixPos = 0; // push all words if less than order
for(;(size_t)suffixPos < prevState->GetSuffix().GetSize(); suffixPos++)
{
const Word &word = prevState->GetSuffix().GetWord(suffixPos);
// cerr << "NT0 --> : " << word << endl;
contextFactor.push_back(&word);
wordPos++;
}
}
// internal non-terminal
else
{
if (subPhraseLength == 1 && phrasePos == cur_hypo.GetCurrTargetPhrase().GetSize()-1)
makeSuffix = true;
// cerr << "prefix of subphrase for left context" << endl;
// score its prefix
for(size_t prefixPos = 0;
prefixPos < GetNGramOrder()-1 // up to LM order window
&& prefixPos < subPhraseLength; // up to length
prefixPos++)
{
const Word &word = prevState->GetPrefix().GetWord(prefixPos);
// cerr << "NT --> " << word << endl;
contextFactor.push_back(&word);
}
bool next = false;
if (phrasePos < cur_hypo.GetCurrTargetPhrase().GetSize() - 1)
next = true;
// check if we are dealing with a large sub-phrase
if (next && subPhraseLength > GetNGramOrder() - 1) // TODO: CHECK??
{
// clear up pending ngrams
MakePrefixNgrams(contextFactor, accumulator, terminalsBeforeSubphrase);
contextFactor.clear();
makePrefix = false;
makeSuffix = true;
// cerr << "suffix of subphrase for right context (only if something is following)" << endl;
// copy language model state
delete lmState;
lmState = NewState( prevState->GetRightContext() );
// push its suffix
size_t remainingWords = subPhraseLength - (GetNGramOrder()-1);
if (remainingWords > GetNGramOrder()-1) {
// only what is needed for the history window
remainingWords = GetNGramOrder()-1;
}
for(size_t suffixPos = 0; suffixPos < prevState->GetSuffix().GetSize(); suffixPos++) {
const Word &word = prevState->GetSuffix().GetWord(suffixPos);
// cerr << "NT --> : " << word << endl;
contextFactor.push_back(&word);
}
wordPos += subPhraseLength;
}
}
}
}
if (makePrefix) {
size_t terminals = beforeSubphrase? 1 : terminalsBeforeSubphrase;
MakePrefixNgrams(contextFactor, accumulator, terminals);
}
if (makeSuffix) {
size_t terminals = beforeSubphrase? 1 : terminalsAfterSubphrase;
MakeSuffixNgrams(contextFactor, accumulator, terminals);
}
// remove duplicates
if (makePrefix && makeSuffix && (contextFactor.size() <= GetNGramOrder())) {
string curr_ngram;
for (size_t i = 0; i < contextFactor.size(); ++i) {
curr_ngram.append((*contextFactor[i]).GetString(GetFactorType(), false));
if (i < contextFactor.size()-1)
curr_ngram.append(":");
}
accumulator->MinusEquals(this,curr_ngram,1);
}
ret->Set(lmState);
// cerr << endl;
return ret;
}
void TargetNgramFeature::ShiftOrPush(std::vector<const Word*> &contextFactor, const Word &word) const
{
if (contextFactor.size() < GetNGramOrder()) {
contextFactor.push_back(&word);
} else {
// shift
for (size_t currNGramOrder = 0 ; currNGramOrder < GetNGramOrder() - 1 ; currNGramOrder++) {
contextFactor[currNGramOrder] = contextFactor[currNGramOrder + 1];
}
contextFactor[GetNGramOrder() - 1] = &word;
}
}
void TargetNgramFeature::MakePrefixNgrams(std::vector<const Word*> &contextFactor, ScoreComponentCollection* accumulator, size_t numberOfStartPos) const {
string curr_ngram;
size_t size = contextFactor.size();
for (size_t k = 0; k < numberOfStartPos; ++k) {
size_t max_length = (size < GetNGramOrder())? size: GetNGramOrder();
for (size_t end = 1+k; end < max_length+k; ++end) {
for (size_t i=k; i <= end; ++i) {
if (i > k)
curr_ngram.append(":");
curr_ngram.append((*contextFactor[i]).GetString(GetFactorType(), false));
}
if (curr_ngram != "<s>" && curr_ngram != "</s>") {
// cerr << "p-ngram: " << curr_ngram << endl;
accumulator->PlusEquals(this,curr_ngram,1);
}
curr_ngram.clear();
}
}
}
void TargetNgramFeature::MakeSuffixNgrams(std::vector<const Word*> &contextFactor, ScoreComponentCollection* accumulator, size_t numberOfEndPos) const {
string curr_ngram;
size_t size = contextFactor.size();
for (size_t k = 0; k < numberOfEndPos; ++k) {
size_t min_start = (size > GetNGramOrder())? (size - GetNGramOrder()): 0;
size_t end = size-1;
for (size_t start=min_start-k; start < end-k; ++start) {
for (size_t j=start; j < size-k; ++j){
curr_ngram.append((*contextFactor[j]).GetString(GetFactorType(), false));
if (j < size-k-1)
curr_ngram.append(":");
}
if (curr_ngram != "<s>" && curr_ngram != "</s>") {
// cerr << "s-ngram: " << curr_ngram << endl;
accumulator->PlusEquals(this,curr_ngram,1);
}
curr_ngram.clear();
}
}
}
bool TargetNgramFeature::Load(const std::string &filePath, FactorType factorType, size_t nGramOrder) {
// dummy
cerr << "This method has not been implemented.." << endl;
assert(false);
return false;
}
LMResult TargetNgramFeature::GetValue(const std::vector<const Word*> &contextFactor, State* finalState) const {
// dummy
LMResult* result = new LMResult();
cerr << "This method has not been implemented.." << endl;
assert(false);
return *result;
}
}

View File

@ -9,6 +9,10 @@
#include "FFState.h"
#include "Word.h"
#include "LM/SingleFactor.h"
#include "ChartHypothesis.h"
#include "ChartManager.h"
namespace Moses
{
@ -22,9 +26,168 @@ class TargetNgramState : public FFState {
std::vector<Word> m_words;
};
class TargetNgramChartState : public FFState
{
private:
FFState* m_lmRightContext;
Phrase m_contextPrefix, m_contextSuffix;
size_t m_numTargetTerminals; // This isn't really correct except for the surviving hypothesis
const ChartHypothesis &m_hypo;
/** Construct the prefix string of up to specified size
* \param ret prefix string
* \param size maximum size (typically max lm context window)
*/
size_t CalcPrefix(const ChartHypothesis &hypo, int featureID, Phrase &ret, size_t size) const
{
const TargetPhrase &target = hypo.GetCurrTargetPhrase();
const AlignmentInfo::NonTermIndexMap &nonTermIndexMap =
target.GetAlignmentInfo().GetNonTermIndexMap();
// loop over the rule that is being applied
for (size_t pos = 0; pos < target.GetSize(); ++pos) {
const Word &word = target.GetWord(pos);
// for non-terminals, retrieve it from underlying hypothesis
if (word.IsNonTerminal()) {
size_t nonTermInd = nonTermIndexMap[pos];
const ChartHypothesis *prevHypo = hypo.GetPrevHypo(nonTermInd);
size = static_cast<const TargetNgramChartState*>(prevHypo->GetFFState(featureID))->CalcPrefix(*prevHypo, featureID, ret, size);
}
// for words, add word
else {
ret.AddWord(target.GetWord(pos));
size--;
}
// finish when maximum length reached
if (size==0)
break;
}
return size;
}
/** Construct the suffix phrase of up to specified size
* will always be called after the construction of prefix phrase
* \param ret suffix phrase
* \param size maximum size of suffix
*/
size_t CalcSuffix(const ChartHypothesis &hypo, int featureID, Phrase &ret, size_t size) const
{
assert(m_contextPrefix.GetSize() <= m_numTargetTerminals);
// special handling for small hypotheses
// does the prefix match the entire hypothesis string? -> just copy prefix
if (m_contextPrefix.GetSize() == m_numTargetTerminals) {
size_t maxCount = std::min(m_contextPrefix.GetSize(), size);
size_t pos= m_contextPrefix.GetSize() - 1;
for (size_t ind = 0; ind < maxCount; ++ind) {
const Word &word = m_contextPrefix.GetWord(pos);
ret.PrependWord(word);
--pos;
}
size -= maxCount;
return size;
}
// construct suffix analogous to prefix
else {
const AlignmentInfo::NonTermIndexMap &nonTermIndexMap =
hypo.GetCurrTargetPhrase().GetAlignmentInfo().GetNonTermIndexMap();
for (int pos = (int) hypo.GetCurrTargetPhrase().GetSize() - 1; pos >= 0 ; --pos) {
const Word &word = hypo.GetCurrTargetPhrase().GetWord(pos);
if (word.IsNonTerminal()) {
size_t nonTermInd = nonTermIndexMap[pos];
const ChartHypothesis *prevHypo = hypo.GetPrevHypo(nonTermInd);
size = static_cast<const TargetNgramChartState*>(prevHypo->GetFFState(featureID))->CalcSuffix(*prevHypo, featureID, ret, size);
}
else {
ret.PrependWord(hypo.GetCurrTargetPhrase().GetWord(pos));
size--;
}
if (size==0)
break;
}
return size;
}
}
public:
TargetNgramChartState(const ChartHypothesis &hypo, int featureID, size_t order)
:m_lmRightContext(NULL)
,m_contextPrefix(Output, order - 1)
,m_contextSuffix(Output, order - 1)
,m_hypo(hypo)
{
m_numTargetTerminals = hypo.GetCurrTargetPhrase().GetNumTerminals();
for (std::vector<const ChartHypothesis*>::const_iterator i = hypo.GetPrevHypos().begin(); i != hypo.GetPrevHypos().end(); ++i) {
// keep count of words (= length of generated string)
m_numTargetTerminals += static_cast<const TargetNgramChartState*>((*i)->GetFFState(featureID))->GetNumTargetTerminals();
}
CalcPrefix(hypo, featureID, m_contextPrefix, order - 1);
CalcSuffix(hypo, featureID, m_contextSuffix, order - 1);
}
~TargetNgramChartState() {
delete m_lmRightContext;
}
void Set(FFState *rightState) {
m_lmRightContext = rightState;
}
FFState* GetRightContext() const {
return m_lmRightContext;
}
size_t GetNumTargetTerminals() const {
return m_numTargetTerminals;
}
const Phrase &GetPrefix() const {
return m_contextPrefix;
}
const Phrase &GetSuffix() const {
return m_contextSuffix;
}
int Compare(const FFState& o) const {
const TargetNgramChartState &other =
dynamic_cast<const TargetNgramChartState &>( o );
// prefix
if (m_hypo.GetCurrSourceRange().GetStartPos() > 0) // not for "<s> ..."
{
int ret = GetPrefix().Compare(other.GetPrefix());
if (ret != 0)
return ret;
}
// suffix
size_t inputSize = m_hypo.GetManager().GetSource().GetSize();
if (m_hypo.GetCurrSourceRange().GetEndPos() < inputSize - 1)// not for "... </s>"
{
int ret = other.GetRightContext()->Compare(*m_lmRightContext);
if (ret != 0)
return ret;
}
return 0;
}
};
/** Sets the features of observed ngrams.
*/
class TargetNgramFeature : public StatefulFeatureFunction {
class TargetNgramFeature : public StatefulFeatureFunction, public LanguageModelPointerState {
public:
TargetNgramFeature(FactorType factorType = 0, size_t n = 3, bool lower_ngrams = true):
StatefulFeatureFunction("dlmn", ScoreProducer::unlimited),
@ -39,8 +202,8 @@ public:
m_bos.SetFactor(m_factorType,bosFactor);
}
bool Load(const std::string &filePath);
bool Load(const std::string&, Moses::FactorType, size_t);
std::string GetScoreProducerWeightShortName(unsigned) const;
size_t GetNumInputScores() const;
@ -53,13 +216,15 @@ public:
virtual FFState* Evaluate(const Hypothesis& cur_hypo, const FFState* prev_state,
ScoreComponentCollection* accumulator) const;
virtual FFState* EvaluateChart( const ChartHypothesis& /* cur_hypo */,
int /* featureID */,
ScoreComponentCollection* ) const
{
/* Not implemented */
assert(0);
}
virtual FFState* EvaluateChart(const ChartHypothesis& cur_hypo, int featureID,
ScoreComponentCollection* accumulator) const;
LMResult GetValue(const std::vector<const Word*> &contextFactor, State* finalState = NULL) const;
size_t GetNGramOrder() const {
return m_n;
}
private:
FactorType m_factorType;
Word m_bos;
@ -71,6 +236,17 @@ private:
float m_sparseProducerWeight;
void appendNgram(const Word& word, bool& skip, std::string& ngram) const;
void ShiftOrPush(std::vector<const Word*> &contextFactor, const Word &word) const;
void MakePrefixNgrams(std::vector<const Word*> &contextFactor, ScoreComponentCollection* accumulator,
size_t numberOfStartPos = 1) const;
void MakeSuffixNgrams(std::vector<const Word*> &contextFactor, ScoreComponentCollection* accumulator,
size_t numberOfEndPos = 1) const;
std::vector<FactorType> GetFactorType() const {
std::vector<FactorType> factorType;
factorType.push_back(m_factorType);
return factorType;
}
};
}