mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-26 13:23:25 +03:00
Implementation of Lattice sampling (Chatterjee and Cancedda, emnlp 2010)
git-svn-id: https://mosesdecoder.svn.sourceforge.net/svnroot/mosesdecoder/trunk@4295 1f5c12ca-751b-0410-a591-d2e778427230
This commit is contained in:
parent
23d9a9b55e
commit
84d73700af
@ -237,6 +237,7 @@ void pruneLatticeFB(Lattice & connectedHyp, map < const Hypothesis*, set <const
|
||||
const ArcList *arcList = succHyp->GetArcList();
|
||||
if (arcList != NULL) {
|
||||
ArcList::const_iterator iterArcList;
|
||||
//QUESTION: What happens if there's more than one loserPrevHypo?
|
||||
for (iterArcList = arcList->begin() ; iterArcList != arcList->end() ; ++iterArcList) {
|
||||
const Hypothesis *loserHypo = *iterArcList;
|
||||
const Hypothesis* loserPrevHypo = loserHypo->GetPrevHypo();
|
||||
|
@ -19,17 +19,7 @@
|
||||
|
||||
using namespace Moses;
|
||||
|
||||
template<class T>
|
||||
T log_sum (T log_a, T log_b)
|
||||
{
|
||||
T v;
|
||||
if (log_a < log_b) {
|
||||
v = log_b+log ( 1 + exp ( log_a-log_b ));
|
||||
} else {
|
||||
v = log_a+log ( 1 + exp ( log_b-log_a ));
|
||||
}
|
||||
return ( v );
|
||||
}
|
||||
|
||||
|
||||
class Edge;
|
||||
|
||||
|
@ -72,11 +72,13 @@ public:
|
||||
|
||||
TranslationTask(size_t lineNumber,
|
||||
InputType* source, OutputCollector* outputCollector, OutputCollector* nbestCollector,
|
||||
OutputCollector* latticeSamplesCollector,
|
||||
OutputCollector* wordGraphCollector, OutputCollector* searchGraphCollector,
|
||||
OutputCollector* detailedTranslationCollector,
|
||||
OutputCollector* alignmentInfoCollector ) :
|
||||
m_source(source), m_lineNumber(lineNumber),
|
||||
m_outputCollector(outputCollector), m_nbestCollector(nbestCollector),
|
||||
m_latticeSamplesCollector(latticeSamplesCollector),
|
||||
m_wordGraphCollector(wordGraphCollector), m_searchGraphCollector(searchGraphCollector),
|
||||
m_detailedTranslationCollector(detailedTranslationCollector),
|
||||
m_alignmentInfoCollector(alignmentInfoCollector) {}
|
||||
@ -240,6 +242,15 @@ public:
|
||||
m_nbestCollector->Write(m_lineNumber, out.str());
|
||||
}
|
||||
|
||||
//lattice samples
|
||||
if (m_latticeSamplesCollector) {
|
||||
TrellisPathList latticeSamples;
|
||||
ostringstream out;
|
||||
manager.CalcLatticeSamples(staticData.GetLatticeSamplesSize(), latticeSamples);
|
||||
OutputNBest(out,latticeSamples, staticData.GetOutputFactorOrder(), manager.GetTranslationSystem(), m_lineNumber);
|
||||
m_latticeSamplesCollector->Write(m_lineNumber, out.str());
|
||||
}
|
||||
|
||||
// detailed translation reporting
|
||||
if (m_detailedTranslationCollector) {
|
||||
ostringstream out;
|
||||
@ -264,6 +275,7 @@ private:
|
||||
size_t m_lineNumber;
|
||||
OutputCollector* m_outputCollector;
|
||||
OutputCollector* m_nbestCollector;
|
||||
OutputCollector* m_latticeSamplesCollector;
|
||||
OutputCollector* m_wordGraphCollector;
|
||||
OutputCollector* m_searchGraphCollector;
|
||||
OutputCollector* m_detailedTranslationCollector;
|
||||
@ -352,6 +364,9 @@ int main(int argc, char** argv)
|
||||
const StaticData& staticData = StaticData::Instance();
|
||||
|
||||
|
||||
//initialise random numbers
|
||||
srand(time(NULL));
|
||||
|
||||
// set up read/writing class
|
||||
IOWrapper* ioWrapper = GetIODevice(staticData);
|
||||
if (!ioWrapper) {
|
||||
@ -380,21 +395,43 @@ int main(int argc, char** argv)
|
||||
// because multithreading may return sentences in shuffled order
|
||||
auto_ptr<OutputCollector> outputCollector; // for translations
|
||||
auto_ptr<OutputCollector> nbestCollector; // for n-best lists
|
||||
auto_ptr<OutputCollector> latticeSamplesCollector; //for lattice samples
|
||||
auto_ptr<ofstream> nbestOut;
|
||||
auto_ptr<ofstream> latticeSamplesOut;
|
||||
size_t nbestSize = staticData.GetNBestSize();
|
||||
string nbestFile = staticData.GetNBestFilePath();
|
||||
bool output1best = true;
|
||||
if (nbestSize) {
|
||||
if (nbestFile == "-" || nbestFile == "/dev/stdout") {
|
||||
// nbest to stdout, no 1-best
|
||||
nbestCollector.reset(new OutputCollector());
|
||||
output1best = false;
|
||||
} else {
|
||||
// nbest to file, 1-best to stdout
|
||||
nbestOut.reset(new ofstream(nbestFile.c_str()));
|
||||
assert(nbestOut->good());
|
||||
nbestCollector.reset(new OutputCollector(nbestOut.get()));
|
||||
outputCollector.reset(new OutputCollector());
|
||||
if (!nbestOut->good()) {
|
||||
TRACE_ERR("ERROR: Failed to open " << nbestFile << " for nbest lists" << endl);
|
||||
exit(1);
|
||||
}
|
||||
nbestCollector.reset(new OutputCollector(nbestOut.get()));
|
||||
}
|
||||
}
|
||||
size_t latticeSamplesSize = staticData.GetLatticeSamplesSize();
|
||||
string latticeSamplesFile = staticData.GetLatticeSamplesFilePath();
|
||||
if (latticeSamplesSize) {
|
||||
if (latticeSamplesFile == "-" || latticeSamplesFile == "/dev/stdout") {
|
||||
latticeSamplesCollector.reset(new OutputCollector());
|
||||
output1best = false;
|
||||
} else {
|
||||
latticeSamplesOut.reset(new ofstream(latticeSamplesFile.c_str()));
|
||||
if (!latticeSamplesOut->good()) {
|
||||
TRACE_ERR("ERROR: Failed to open " << latticeSamplesFile << " for lattice samples" << endl);
|
||||
exit(1);
|
||||
}
|
||||
latticeSamplesCollector.reset(new OutputCollector(latticeSamplesOut.get()));
|
||||
}
|
||||
}
|
||||
if (output1best) {
|
||||
outputCollector.reset(new OutputCollector());
|
||||
}
|
||||
|
||||
@ -437,7 +474,9 @@ int main(int argc, char** argv)
|
||||
// set up task of translating one sentence
|
||||
TranslationTask* task =
|
||||
new TranslationTask(lineCount,source, outputCollector.get(),
|
||||
nbestCollector.get(), wordGraphCollector.get(),
|
||||
nbestCollector.get(),
|
||||
latticeSamplesCollector.get(),
|
||||
wordGraphCollector.get(),
|
||||
searchGraphCollector.get(),
|
||||
detailedTranslationCollector.get(),
|
||||
alignmentInfoCollector.get() );
|
||||
|
@ -25,6 +25,7 @@ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
#include <ext/hash_set>
|
||||
#endif
|
||||
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include <cmath>
|
||||
#include "Manager.h"
|
||||
@ -257,6 +258,152 @@ void Manager::CalcNBest(size_t count, TrellisPathList &ret,bool onlyDistinct) co
|
||||
}
|
||||
}
|
||||
|
||||
struct SGNReverseCompare {
|
||||
bool operator() (const SearchGraphNode& s1, const SearchGraphNode& s2) const {
|
||||
return s1.hypo->GetId() > s2.hypo->GetId();
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Implements lattice sampling, as in Chatterjee & Cancedda, emnlp 2010
|
||||
**/
|
||||
void Manager::CalcLatticeSamples(size_t count, TrellisPathList &ret) const {
|
||||
|
||||
vector<SearchGraphNode> searchGraph;
|
||||
GetSearchGraph(searchGraph);
|
||||
|
||||
//Calculation of the sigmas of each hypothesis and edge. In C&C notation this is
|
||||
//the "log of the cumulative unnormalized probability of all the paths in the
|
||||
// lattice for the hypothesis to a final node"
|
||||
typedef pair<int, int> Edge;
|
||||
map<const Hypothesis*, float> sigmas;
|
||||
map<Edge, float> edgeScores;
|
||||
map<const Hypothesis*, set<const Hypothesis*> > outgoingHyps;
|
||||
map<int,const Hypothesis*> idToHyp;
|
||||
map<int,float> fscores;
|
||||
|
||||
//Iterating through the hypos in reverse order of id gives a reverse
|
||||
//topological order. We rely on the fact that hypo ids are given out
|
||||
//sequentially, as the search proceeds.
|
||||
//NB: Could just sort by stack.
|
||||
sort(searchGraph.begin(), searchGraph.end(), SGNReverseCompare());
|
||||
|
||||
//first task is to fill in the outgoing hypos and edge scores.
|
||||
for (vector<SearchGraphNode>::const_iterator i = searchGraph.begin();
|
||||
i != searchGraph.end(); ++i) {
|
||||
const Hypothesis* hypo = i->hypo;
|
||||
idToHyp[hypo->GetId()] = hypo;
|
||||
fscores[hypo->GetId()] = i->fscore;
|
||||
if (hypo->GetId()) {
|
||||
//back to current
|
||||
const Hypothesis* prevHypo = i->hypo->GetPrevHypo();
|
||||
outgoingHyps[prevHypo].insert(hypo);
|
||||
edgeScores[Edge(prevHypo->GetId(),hypo->GetId())] =
|
||||
hypo->GetScore() - prevHypo->GetScore();
|
||||
}
|
||||
//forward from current
|
||||
if (i->forward >= 0) {
|
||||
map<int,const Hypothesis*>::const_iterator idToHypIter = idToHyp.find(i->forward);
|
||||
assert(idToHypIter != idToHyp.end());
|
||||
const Hypothesis* nextHypo = idToHypIter->second;
|
||||
outgoingHyps[hypo].insert(nextHypo);
|
||||
map<int,float>::const_iterator fscoreIter = fscores.find(nextHypo->GetId());
|
||||
assert(fscoreIter != fscores.end());
|
||||
edgeScores[Edge(hypo->GetId(),nextHypo->GetId())] =
|
||||
i->fscore - fscoreIter->second;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//then run through again to calculate sigmas
|
||||
for (vector<SearchGraphNode>::const_iterator i = searchGraph.begin();
|
||||
i != searchGraph.end(); ++i) {
|
||||
|
||||
if (i->forward == -1) {
|
||||
sigmas[i->hypo] = 0;
|
||||
} else {
|
||||
map<const Hypothesis*, set<const Hypothesis*> >::const_iterator outIter =
|
||||
outgoingHyps.find(i->hypo);
|
||||
|
||||
assert(outIter != outgoingHyps.end());
|
||||
float sigma = 0;
|
||||
for (set<const Hypothesis*>::const_iterator j = outIter->second.begin();
|
||||
j != outIter->second.end(); ++j) {
|
||||
map<const Hypothesis*, float>::const_iterator succIter = sigmas.find(*j);
|
||||
assert(succIter != sigmas.end());
|
||||
map<Edge,float>::const_iterator edgeScoreIter =
|
||||
edgeScores.find(Edge(i->hypo->GetId(),(*j)->GetId()));
|
||||
assert(edgeScoreIter != edgeScores.end());
|
||||
float term = edgeScoreIter->second + succIter->second; // Add sigma(*j)
|
||||
if (sigma == 0) {
|
||||
sigma = term;
|
||||
} else {
|
||||
sigma = log_sum(sigma,term);
|
||||
}
|
||||
}
|
||||
sigmas[i->hypo] = sigma;
|
||||
}
|
||||
}
|
||||
|
||||
//The actual sampling!
|
||||
const Hypothesis* startHypo = searchGraph.back().hypo;
|
||||
assert(startHypo->GetId() == 0);
|
||||
for (size_t i = 0; i < count; ++i) {
|
||||
vector<const Hypothesis*> path;
|
||||
path.push_back(startHypo);
|
||||
while(1) {
|
||||
map<const Hypothesis*, set<const Hypothesis*> >::const_iterator outIter =
|
||||
outgoingHyps.find(path.back());
|
||||
if (outIter == outgoingHyps.end() || !outIter->second.size()) {
|
||||
//end of the path
|
||||
break;
|
||||
}
|
||||
//score the possibles
|
||||
vector<const Hypothesis*> candidates;
|
||||
vector<float> candidateScores;
|
||||
float scoreTotal = 0;
|
||||
for (set<const Hypothesis*>::const_iterator j = outIter->second.begin();
|
||||
j != outIter->second.end(); ++j) {
|
||||
candidates.push_back(*j);
|
||||
assert(sigmas.find(*j) != sigmas.end());
|
||||
Edge edge(path.back()->GetId(),(*j)->GetId());
|
||||
assert(edgeScores.find(edge) != edgeScores.end());
|
||||
candidateScores.push_back(sigmas[*j] + edgeScores[edge]);
|
||||
if (scoreTotal == 0) {
|
||||
scoreTotal = candidateScores.back();
|
||||
} else {
|
||||
scoreTotal = log_sum(candidateScores.back(), scoreTotal);
|
||||
}
|
||||
}
|
||||
|
||||
//normalise
|
||||
transform(candidateScores.begin(), candidateScores.end(), candidateScores.begin(), bind2nd(minus<float>(),scoreTotal));
|
||||
//copy(candidateScores.begin(),candidateScores.end(),ostream_iterator<float>(cerr," "));
|
||||
//cerr << endl;
|
||||
|
||||
//draw the sample
|
||||
float random = log((float)rand()/RAND_MAX);
|
||||
size_t position = 1;
|
||||
float sum = candidateScores[0];
|
||||
for (; position < candidateScores.size() && sum < random; ++position) {
|
||||
sum = log_sum(sum,candidateScores[position]);
|
||||
}
|
||||
//cerr << "Random: " << random << " Chose " << position-1 << endl;
|
||||
const Hypothesis* chosen = candidates[position-1];
|
||||
path.push_back(chosen);
|
||||
}
|
||||
//cerr << "Path: " << endl;
|
||||
//for (size_t j = 0; j < path.size(); ++j) {
|
||||
// cerr << path[j]->GetId() << " " << path[j]->GetScoreBreakdown() << endl;
|
||||
//}
|
||||
//cerr << endl;
|
||||
|
||||
//Convert the hypos to TrellisPath
|
||||
ret.Add(new TrellisPath(path));
|
||||
//cerr << ret.at(ret.GetSize()-1).GetScoreBreakdown() << endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -130,6 +130,7 @@ public:
|
||||
const Hypothesis *GetBestHypothesis() const;
|
||||
const Hypothesis *GetActualBestHypothesis() const;
|
||||
void CalcNBest(size_t count, TrellisPathList &ret,bool onlyDistinct=0) const;
|
||||
void CalcLatticeSamples(size_t count, TrellisPathList &ret) const;
|
||||
void PrintAllDerivations(long translationId, std::ostream& outputStream) const;
|
||||
void printDivergentHypothesis(long translationId, const Hypothesis* hypo, const std::vector <const TargetPhrase*> & remainingPhrases, float remainingScore , std::ostream& outputStream) const;
|
||||
void printThisHypothesis(long translationId, const Hypothesis* hypo, const std::vector <const TargetPhrase* > & remainingPhrases, float remainingScore , std::ostream& outputStream) const;
|
||||
|
@ -62,6 +62,7 @@ Parameter::Parameter()
|
||||
AddParam("max-trans-opt-per-coverage", "maximum number of translation options per input span (after applying mapping steps)");
|
||||
AddParam("max-phrase-length", "maximum phrase length (default 20)");
|
||||
AddParam("n-best-list", "file and size of n-best-list to be generated; specify - as the file in order to write to STDOUT");
|
||||
AddParam("lattice-samples", "generate samples from lattice, in same format as nbest list. Uses the file and size arguments, as in n-best-list");
|
||||
AddParam("n-best-factor", "factor to compute the maximum number of contenders (=factor*nbest-size). value 0 means infinity, i.e. no threshold. default is 0");
|
||||
AddParam("print-all-derivations", "to print all derivations in search graph");
|
||||
AddParam("output-factors", "list of factors in the output");
|
||||
|
@ -81,8 +81,8 @@ StaticData::StaticData()
|
||||
,m_numInputScores(0)
|
||||
,m_detailedTranslationReportingFilePath()
|
||||
,m_onlyDistinctNBest(false)
|
||||
,m_lmEnableOOVFeature(false)
|
||||
,m_factorDelimiter("|") // default delimiter between factors
|
||||
,m_lmEnableOOVFeature(false)
|
||||
,m_isAlwaysCreateDirectTranslationOption(false)
|
||||
{
|
||||
m_maxFactorIdx[0] = 0; // source side
|
||||
@ -169,7 +169,7 @@ bool StaticData::LoadData(Parameter *parameter)
|
||||
m_nBestSize = Scan<size_t>( m_parameter->GetParam("n-best-list")[1] );
|
||||
m_onlyDistinctNBest=(m_parameter->GetParam("n-best-list").size()>2 && m_parameter->GetParam("n-best-list")[2]=="distinct");
|
||||
} else if (m_parameter->GetParam("n-best-list").size() == 1) {
|
||||
UserMessage::Add(string("ERROR: wrong format for switch -n-best-list file size"));
|
||||
UserMessage::Add(string("wrong format for switch -n-best-list file size"));
|
||||
return false;
|
||||
} else {
|
||||
m_nBestSize = 0;
|
||||
@ -180,6 +180,17 @@ bool StaticData::LoadData(Parameter *parameter)
|
||||
m_nBestFactor = 20;
|
||||
}
|
||||
|
||||
//lattice samples
|
||||
if (m_parameter->GetParam("lattice-samples").size() ==2 ) {
|
||||
m_latticeSamplesFilePath = m_parameter->GetParam("lattice-samples")[0];
|
||||
m_latticeSamplesSize = Scan<size_t>(m_parameter->GetParam("lattice-samples")[1]);
|
||||
} else if (m_parameter->GetParam("lattice-samples").size() != 0 ) {
|
||||
UserMessage::Add(string("wrong format for switch -lattice-samples file size"));
|
||||
return false;
|
||||
} else {
|
||||
m_latticeSamplesSize = 0;
|
||||
}
|
||||
|
||||
// word graph
|
||||
if (m_parameter->GetParam("output-word-graph").size() == 2)
|
||||
m_outputWordGraph = true;
|
||||
|
@ -112,6 +112,7 @@ protected:
|
||||
m_maxHypoStackSize //! hypothesis-stack size that triggers pruning
|
||||
, m_minHypoStackDiversity //! minimum number of hypothesis in stack for each source word coverage
|
||||
, m_nBestSize
|
||||
, m_latticeSamplesSize
|
||||
, m_nBestFactor
|
||||
, m_maxNoTransOptPerCoverage
|
||||
, m_maxNoPartTransOpt
|
||||
@ -121,7 +122,7 @@ protected:
|
||||
std::string
|
||||
m_constraintFileName;
|
||||
|
||||
std::string m_nBestFilePath;
|
||||
std::string m_nBestFilePath, m_latticeSamplesFilePath;
|
||||
bool m_fLMsLoaded, m_labeledNBestList,m_nBestIncludesAlignment;
|
||||
bool m_dropUnknown; //! false = treat unknown words as unknowns, and translate them as themselves; true = drop (ignore) them
|
||||
bool m_wordDeletionEnabled;
|
||||
@ -407,12 +408,20 @@ public:
|
||||
return m_nBestFilePath;
|
||||
}
|
||||
bool IsNBestEnabled() const {
|
||||
return (!m_nBestFilePath.empty()) || m_mbr || m_useLatticeMBR || m_outputSearchGraph || m_useConsensusDecoding
|
||||
return (!m_nBestFilePath.empty()) || m_mbr || m_useLatticeMBR || m_outputSearchGraph || m_useConsensusDecoding || !m_latticeSamplesFilePath.empty()
|
||||
#ifdef HAVE_PROTOBUF
|
||||
|| m_outputSearchGraphPB
|
||||
#endif
|
||||
;
|
||||
}
|
||||
size_t GetLatticeSamplesSize() const {
|
||||
return m_latticeSamplesSize;
|
||||
}
|
||||
|
||||
const std::string& GetLatticeSamplesFilePath() const {
|
||||
return m_latticeSamplesFilePath;
|
||||
}
|
||||
|
||||
size_t GetNBestFactor() const {
|
||||
return m_nBestFactor;
|
||||
}
|
||||
|
@ -41,6 +41,25 @@ TrellisPath::TrellisPath(const Hypothesis *hypo)
|
||||
}
|
||||
}
|
||||
|
||||
void TrellisPath::InitScore() {
|
||||
m_totalScore = m_path[0]->GetWinningHypo()->GetTotalScore();
|
||||
m_scoreBreakdown= m_path[0]->GetWinningHypo()->GetScoreBreakdown();
|
||||
|
||||
//calc score
|
||||
size_t sizePath = m_path.size();
|
||||
for (size_t pos = 0 ; pos < sizePath ; pos++) {
|
||||
const Hypothesis *hypo = m_path[pos];
|
||||
const Hypothesis *winningHypo = hypo->GetWinningHypo();
|
||||
if (hypo != winningHypo) {
|
||||
m_totalScore = m_totalScore - winningHypo->GetTotalScore() + hypo->GetTotalScore();
|
||||
m_scoreBreakdown.MinusEquals(winningHypo->GetScoreBreakdown());
|
||||
m_scoreBreakdown.PlusEquals(hypo->GetScoreBreakdown());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
TrellisPath::TrellisPath(const TrellisPath ©, size_t edgeIndex, const Hypothesis *arc)
|
||||
:m_prevEdgeChanged(edgeIndex)
|
||||
{
|
||||
@ -60,22 +79,20 @@ TrellisPath::TrellisPath(const TrellisPath ©, size_t edgeIndex, const Hypoth
|
||||
prevHypo = prevHypo->GetPrevHypo();
|
||||
}
|
||||
|
||||
// Calc score
|
||||
m_totalScore = m_path[0]->GetWinningHypo()->GetTotalScore();
|
||||
m_scoreBreakdown= m_path[0]->GetWinningHypo()->GetScoreBreakdown();
|
||||
|
||||
size_t sizePath = m_path.size();
|
||||
for (size_t pos = 0 ; pos < sizePath ; pos++) {
|
||||
const Hypothesis *hypo = m_path[pos];
|
||||
const Hypothesis *winningHypo = hypo->GetWinningHypo();
|
||||
if (hypo != winningHypo) {
|
||||
m_totalScore = m_totalScore - winningHypo->GetTotalScore() + hypo->GetTotalScore();
|
||||
m_scoreBreakdown.MinusEquals(winningHypo->GetScoreBreakdown());
|
||||
m_scoreBreakdown.PlusEquals(hypo->GetScoreBreakdown());
|
||||
}
|
||||
}
|
||||
InitScore();
|
||||
}
|
||||
|
||||
TrellisPath::TrellisPath(const vector<const Hypothesis*> edges)
|
||||
:m_prevEdgeChanged(NOT_FOUND)
|
||||
{
|
||||
m_path.resize(edges.size());
|
||||
copy(edges.rbegin(),edges.rend(),m_path.begin());
|
||||
InitScore();
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
void TrellisPath::CreateDeviantPaths(TrellisPathCollection &pathColl) const
|
||||
{
|
||||
const size_t sizePath = m_path.size();
|
||||
|
@ -41,6 +41,7 @@ class TrellisPathList;
|
||||
class TrellisPath
|
||||
{
|
||||
friend std::ostream& operator<<(std::ostream&, const TrellisPath&);
|
||||
friend class Manager;
|
||||
|
||||
protected:
|
||||
std::vector<const Hypothesis *> m_path; //< list of hypotheses/arcs
|
||||
@ -51,7 +52,13 @@ protected:
|
||||
ScoreComponentCollection m_scoreBreakdown;
|
||||
float m_totalScore;
|
||||
|
||||
//Used by Manager::LatticeSample()
|
||||
TrellisPath(const std::vector<const Hypothesis*> edges);
|
||||
|
||||
void InitScore();
|
||||
|
||||
public:
|
||||
|
||||
TrellisPath(); // not implemented
|
||||
|
||||
//! create path OF pure hypo
|
||||
|
@ -346,6 +346,18 @@ double GetUserTime();
|
||||
// dump SGML parser for <seg> tags
|
||||
std::map<std::string, std::string> ProcessAndStripSGML(std::string &line);
|
||||
|
||||
template<class T>
|
||||
T log_sum (T log_a, T log_b)
|
||||
{
|
||||
T v;
|
||||
if (log_a < log_b) {
|
||||
v = log_b+log ( 1 + exp ( log_a-log_b ));
|
||||
} else {
|
||||
v = log_a+log ( 1 + exp ( log_b-log_a ));
|
||||
}
|
||||
return ( v );
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user