Added script to perform Minimum Bayes Risk reranking

git-svn-id: https://mosesdecoder.svn.sourceforge.net/svnroot/mosesdecoder/trunk@1372 1f5c12ca-751b-0410-a591-d2e778427230
This commit is contained in:
abarun 2007-05-02 17:26:01 +00:00
parent a4ac4d3d35
commit ba90a05233
5 changed files with 424 additions and 1 deletions

View File

@ -23,7 +23,7 @@ RELEASEDIR=$(TARGETDIR)/scripts-$(TS)
all: compile
SUBDIRS=cmert-0.5 phrase-extract symal
SUBDIRS=cmert-0.5 phrase-extract symal mbr
compile:
pwd=`pwd`; \

View File

@ -26,6 +26,7 @@ training/cmert-0.5/python/psyco/_psyco.so
training/cmert-0.5/python/psyco/support.py
training/cmert-0.5/README
training/cmert-0.5/score-nbest.py
training/mbr/mbr
training/filter-model-given-input.pl
training/filter-and-binarize-model-given-input.pl
training/mert-moses.pl

View File

@ -39,3 +39,4 @@ training/symal/giza2bal.pl
recaser/train-recaser.perl
recaser/recase.perl
recaser/detokenizer.perl
training/mbr/mbr

16
scripts/training/mbr/Makefile Executable file
View File

@ -0,0 +1,16 @@
CC=g++
OBJS=mbr.o
CFLAGS=-O3
LDFLAGS=
LDLIBS=
all: mbr
clean:
rm -f *.o
mert: $(OBJS)
gcc $(OBJS) $(LDLIBS) -o $@
mert_p: $(OBJS)
gcc $(LDFLAGS) $(OBJS) $(LDLIBS) -o $@

View File

@ -0,0 +1,405 @@
#include <iostream>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <vector>
#include <map>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
#include <stdio.h>
using namespace std ;
/* Input :
1. a sorted n-best list, with duplicates filtered out in the following format
0 ||| amr moussa is currently on a visit to libya , tomorrow , sunday , to hold talks with regard to the in sudan . ||| 0 -4.94418 0 0 -2.16036 0 0 -81.4462 -106.593 -114.43 -105.55 -12.7873 -26.9057 -25.3715 -52.9336 7.99917 -24 ||| -4.58432
2. a weight vector
3. bleu order ( default = 4)
4. scaling factor to weigh the weight vector (default = 1.0)
Output :
translations that minimise the Bayes Risk of the n-best list
*/
int TABLE_LINE_MAX_LENGTH = 5000;
vector<double> weights;
float SCALE = 1.0;
int BLEU_ORDER = 4;
int SMOOTH = 1;
int DEBUG = 0;
double min_interval = 1e-4;
#define SAFE_GETLINE(_IS, _LINE, _SIZE, _DELIM) {_IS.getline(_LINE, _SIZE, _DELIM); if(_IS.fail() && !_IS.bad() && !_IS.eof()) _IS.clear();}
typedef string WORD;
typedef unsigned int WORD_ID;
map<WORD, WORD_ID> lookup;
vector< WORD > vocab;
class candidate_t{
public:
vector<WORD_ID> translation;
vector<double> features;
int translation_size;
} ;
void usage(void)
{
fprintf(stderr,
"usage: mbr -s SCALE -n BLEU_ORDER -w weights.txt -i nbest.txt");
}
char *strstrsep(char **stringp, const char *delim) {
char *match, *save;
save = *stringp;
if (*stringp == NULL)
return NULL;
match = strstr(*stringp, delim);
if (match == NULL) {
*stringp = NULL;
return save;
}
*match = '\0';
*stringp = match + strlen(delim);
return save;
}
vector<string> tokenize( const char input[] )
{
vector< string > token;
bool betweenWords = true;
int start;
int i=0;
for(; input[i] != '\0'; i++)
{
bool isSpace = (input[i] == ' ' || input[i] == '\t');
if (!isSpace && betweenWords)
{
start = i;
betweenWords = false;
}
else if (isSpace && !betweenWords)
{
token.push_back( string( input+start, i-start ) );
betweenWords = true;
}
}
if (!betweenWords)
token.push_back( string( input+start, i-start+1 ) );
return token;
}
WORD_ID storeIfNew( WORD word )
{
if( lookup.find( word ) != lookup.end() )
return lookup[ word ];
WORD_ID id = vocab.size();
vocab.push_back( word );
lookup[ word ] = id;
return id;
}
int count( string input, char delim )
{
int count = 0;
for ( int i = 0; i < input.size(); i++){
if ( input[i] == delim)
count++;
}
return count;
}
double calculate_probability(const vector<double> & feats, const vector<double> & weights,double SCALE){
if (feats.size() != weights.size())
cerr << "ERROR : Number of features <> number of weights " << endl;
double prob = 0;
for ( int i = 0; i < feats.size(); i++){
prob += feats[i]*weights[i]*SCALE;
}
return exp(prob);
}
void extract_ngrams(const vector<WORD_ID>& sentence, map < vector < WORD_ID>, int > & allngrams)
{
vector< WORD_ID> ngram;
for (int k = 0; k< BLEU_ORDER; k++)
{
for(int i =0; i < max((int)sentence.size()-k,0); i++)
{
for ( int j = i; j<= i+k; j++)
{
ngram.push_back(sentence[j]);
}
++allngrams[ngram];
ngram.clear();
}
}
}
double calculate_score(const vector<candidate_t*> & sents, int ref, int hyp, vector < map < vector < WORD_ID>, int > > & ngram_stats ) {
int comps_n = 2*BLEU_ORDER+1;
int comps[comps_n];
double logbleu = 0.0, brevity;
int hyp_length = sents[hyp]->translation_size;
for (int i =0; i<BLEU_ORDER;i++)
{
comps[2*i] = 0;
comps[2*i+1] = max(hyp_length-i,0);
}
map< vector < WORD_ID > ,int > & hyp_ngrams = ngram_stats[hyp] ;
map< vector < WORD_ID >, int > & ref_ngrams = ngram_stats[ref] ;
for (map< vector< WORD_ID >, int >::iterator it = hyp_ngrams.begin();
it != hyp_ngrams.end(); it++)
{
map< vector< WORD_ID >, int >::iterator ref_it = ref_ngrams.find(it->first);
if(ref_it != ref_ngrams.end())
{
comps[2* (it->first.size()-1)] += min(ref_it->second,it->second);
}
}
comps[comps_n-1] = sents[ref]->translation_size;
if (DEBUG)
{
for ( int i = 0; i < comps_n; i++)
cerr << "Comp " << i << " : " << comps[i];
}
for (int i=0; i<BLEU_ORDER; i++)
{
if (comps[0] == 0)
return 0.0;
if ( i > 0 )
logbleu += log(comps[2*i]+SMOOTH)-log(comps[2*i+1]+SMOOTH);
else
logbleu += log(comps[2*i])-log(comps[2*i+1]);
}
logbleu /= BLEU_ORDER;
brevity = 1.0-(double)comps[comps_n-1]/comps[1]; // comps[comps_n-1] is the ref length, comps[1] is the test length
if (brevity < 0.0)
logbleu += brevity;
return exp(logbleu);
}
vector<double> read_weights(string fileName){
ifstream inFile;
inFile.open(fileName.c_str());
istream *inFileP = &inFile;
char line[TABLE_LINE_MAX_LENGTH];
int i=0;
vector<double> weights;
while(true)
{
i++;
SAFE_GETLINE((*inFileP), line, TABLE_LINE_MAX_LENGTH, '\n');
if (inFileP->eof()) break;
vector<string> token = tokenize(line);
for (int j = 0; j < token.size(); j++){
weights.push_back(atof(token[j].c_str()));
}
}
cerr << endl;
return weights;
}
int find_pos_of_min_element(const vector<double>& vec){
int min_pos = -1;
double min_element = 10000;
for ( int i = 0; i < vec.size(); i++){
if (vec[i] < min_element){
min_element = vec[i];
min_pos = i;
}
}
/* cerr << "Min pos is : " << min_pos << endl;
cerr << "Min mbr loss is : " << min_element << endl;*/
return min_pos;
}
void process(int sent, const vector<candidate_t*> & sents){
// cerr << "Sentence " << sent << " has " << sents.size() << " candidate translations" << endl;
double marginal = 0;
vector<double> joint_prob_vec;
double joint_prob;
vector< map < vector <WORD_ID>, int > > ngram_stats;
for (int i = 0; i < sents.size(); i++){
// cerr << "Sents " << i << " has trans : " << sents[i]->translation << endl;
//Calculate marginal and cache the posteriors
joint_prob = calculate_probability(sents[i]->features,weights,SCALE);
marginal += joint_prob;
joint_prob_vec.push_back(joint_prob);
//Cache ngram counts
map < vector <WORD_ID>, int > counts;
extract_ngrams(sents[i]->translation,counts);
ngram_stats.push_back(counts);
}
//cerr << "Marginal is " << marginal;
vector<double> mbr_loss;
double bleu, weightedLoss;
double weightedLossCumul = 0;
double minMBRLoss = 1000000;
int minMBRLossIdx = -1;
/* Main MBR computation done here */
for (int i = 0; i < sents.size(); i++){
weightedLossCumul = 0;
for (int j = 0; j < sents.size(); j++){
if ( i != j) {
bleu = calculate_score(sents, j, i,ngram_stats );
weightedLoss = ( 1 - bleu) * ( joint_prob_vec[j]/marginal);
weightedLossCumul += weightedLoss;
if (weightedLossCumul > minMBRLoss)
break;
}
}
if (weightedLossCumul < minMBRLoss){
minMBRLoss = weightedLossCumul;
minMBRLossIdx = i;
}
}
// cerr << "Min pos is : " << minMBRLossIdx << endl;
// cerr << "Min mbr loss is : " << minMBRLoss << endl;
/* Find sentence that minimises Bayes Risk under 1- BLEU loss */
vector< WORD_ID > best_translation = sents[minMBRLossIdx]->translation;
for (int i = 0; i < best_translation.size(); i++)
cout << vocab[best_translation[i]] << " " ;
cout << endl;
}
void read_nbest_data(string fileName)
{
FILE * fp;
fp = fopen (fileName.c_str() , "r");
static char buf[10000];
char *rest, *tok;
int field;
int sent_i, cur_sent;
candidate_t *cand = NULL;
vector<candidate_t*> testsents;
cur_sent = -1;
while (fgets(buf, sizeof(buf), fp) != NULL) {
field = 0;
rest = buf;
while ((tok = strstrsep(&rest, "|||")) != NULL) {
if (field == 0) {
sent_i = strtol(tok, NULL, 10);
cand = new candidate_t;
} else if (field == 2) {
vector<double> features;
char * subtok;
subtok = strtok (tok," ");
while (subtok != NULL)
{
features.push_back(atof(subtok));
subtok = strtok (NULL, " ");
}
cand->features = features;
} else if (field == 1) {
vector<string> trans_str = tokenize(tok);
vector<WORD_ID> trans_int;
for (int j=0; j<trans_str.size(); j++)
{
trans_int.push_back( storeIfNew( trans_str[j] ) );
}
cand->translation= trans_int;
cand->translation_size = cand->translation.size();
} else if (field == 3) {
continue;
}
else {
fprintf(stderr, "too many fields in n-best list line\n");
}
field++;
}
if (sent_i != cur_sent){
if (cur_sent != - 1) {
process(cur_sent,testsents);
}
cur_sent = sent_i;
testsents.clear();
}
testsents.push_back(cand);
}
process(cur_sent,testsents);
cerr << endl;
}
int main(int argc, char **argv)
{
time_t starttime = time(NULL);
int c;
string f_weight = "";
string f_nbest = "";
while ((c = getopt(argc, argv, "s:w:n:i:")) != -1) {
switch (c) {
case 's':
SCALE = atof(optarg);
break;
case 'n':
BLEU_ORDER = atoi(optarg);
break;
case 'w':
f_weight = optarg;
break;
case 'i':
f_nbest = optarg;
break;
default:
usage();
}
}
argc -= optind;
argv += optind;
if (argc < 2) {
usage();
}
weights = read_weights(f_weight);
read_nbest_data(f_nbest);
time_t endtime = time(NULL);
cerr << "Processed data in" << (endtime-starttime) << " seconds\n";
}