mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-27 05:55:02 +03:00
Fix usage of whitespaces for Optimizers.
This commit is contained in:
parent
6c845323ac
commit
eecfb171da
@ -9,17 +9,17 @@
|
||||
|
||||
using namespace std;
|
||||
|
||||
static const float MIN_FLOAT=-1.0*numeric_limits<float>::max();
|
||||
static const float MAX_FLOAT=numeric_limits<float>::max();
|
||||
static const float MIN_FLOAT = -1.0 * numeric_limits<float>::max();
|
||||
static const float MAX_FLOAT = numeric_limits<float>::max();
|
||||
|
||||
namespace {
|
||||
|
||||
/**
|
||||
* Compute the intersection of 2 lines.
|
||||
*/
|
||||
float intersect(float m1, float b1,float m2,float b2)
|
||||
inline float intersect(float m1, float b1, float m2, float b2)
|
||||
{
|
||||
float isect = ((b2-b1)/(m1-m2));
|
||||
float isect = (b2 - b1) / (m1 - m2);
|
||||
if (!isfinite(isect)) {
|
||||
isect = MAX_FLOAT;
|
||||
}
|
||||
@ -39,98 +39,100 @@ void Optimizer::SetFData(FeatureData *_FData)
|
||||
FData = _FData;
|
||||
}
|
||||
|
||||
Optimizer::Optimizer(unsigned Pd,vector<unsigned> i2O,vector<parameter_t> start, unsigned int nrandom):scorer(NULL),FData(NULL),number_of_random_directions(nrandom)
|
||||
Optimizer::Optimizer(unsigned Pd, vector<unsigned> i2O, vector<parameter_t> start, unsigned int nrandom)
|
||||
: scorer(NULL), FData(NULL), number_of_random_directions(nrandom)
|
||||
{
|
||||
// Warning: the init vector is a full set of parameters, of dimension pdim!
|
||||
Point::pdim=Pd;
|
||||
Point::pdim = Pd;
|
||||
|
||||
assert(start.size()==Pd);
|
||||
Point::dim=i2O.size();
|
||||
Point::optindices=i2O;
|
||||
if (Point::pdim>Point::dim) {
|
||||
for (unsigned int i=0; i<Point::pdim; i++) {
|
||||
assert(start.size() == Pd);
|
||||
Point::dim = i2O.size();
|
||||
Point::optindices = i2O;
|
||||
if (Point::pdim > Point::dim) {
|
||||
for (unsigned int i = 0; i < Point::pdim; i++) {
|
||||
unsigned int j = 0;
|
||||
while (j<Point::dim && i!=i2O[j])
|
||||
while (j < Point::dim && i != i2O[j])
|
||||
j++;
|
||||
|
||||
// The index i wasnt found on optindices, it is a fixed index,
|
||||
// we use the value of the start vector.
|
||||
if (j==Point::dim)
|
||||
Point::fixedweights[i]=start[i];
|
||||
if (j == Point::dim)
|
||||
Point::fixedweights[i] = start[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Optimizer::~Optimizer() {}
|
||||
|
||||
statscore_t Optimizer::GetStatScore(const Point& param)const
|
||||
statscore_t Optimizer::GetStatScore(const Point& param) const
|
||||
{
|
||||
vector<unsigned> bests;
|
||||
Get1bests(param,bests);
|
||||
Get1bests(param, bests);
|
||||
//copy(bests.begin(),bests.end(),ostream_iterator<unsigned>(cerr," "));
|
||||
statscore_t score = GetStatScore(bests);
|
||||
return score;
|
||||
}
|
||||
|
||||
map<float,diff_t >::iterator AddThreshold(map<float,diff_t >& thresholdmap,float newt,pair<unsigned,unsigned> newdiff)
|
||||
map<float,diff_t >::iterator AddThreshold(map<float,diff_t >& thresholdmap, float newt, pair<unsigned,unsigned> newdiff)
|
||||
{
|
||||
map<float,diff_t>::iterator it=thresholdmap.find(newt);
|
||||
if(it!=thresholdmap.end()) {
|
||||
//the threshold already exists!! this is very unlikely
|
||||
if(it->second.back().first==newdiff.first)
|
||||
it->second.back().second=newdiff.second;//there was already a diff for this sentence, we change the 1 best;
|
||||
map<float,diff_t>::iterator it = thresholdmap.find(newt);
|
||||
if (it != thresholdmap.end()) {
|
||||
// the threshold already exists!! this is very unlikely
|
||||
if (it->second.back().first == newdiff.first)
|
||||
// there was already a diff for this sentence, we change the 1 best;
|
||||
it->second.back().second = newdiff.second;
|
||||
else
|
||||
it->second.push_back(newdiff);
|
||||
} else {
|
||||
//normal case
|
||||
pair< map<float,diff_t >::iterator,bool > ins=thresholdmap.insert(threshold(newt,diff_t(1,newdiff)));
|
||||
assert(ins.second);//we really inserted something
|
||||
it=ins.first;
|
||||
// normal case
|
||||
pair<map<float,diff_t>::iterator, bool> ins = thresholdmap.insert(threshold(newt, diff_t(1, newdiff)));
|
||||
assert(ins.second); // we really inserted something
|
||||
it = ins.first;
|
||||
}
|
||||
return it;
|
||||
}
|
||||
|
||||
|
||||
statscore_t Optimizer::LineOptimize(const Point& origin,const Point& direction,Point& bestpoint)const
|
||||
statscore_t Optimizer::LineOptimize(const Point& origin, const Point& direction, Point& bestpoint) const
|
||||
{
|
||||
|
||||
// We are looking for the best Point on the line y=Origin+x*direction
|
||||
float min_int=0.0001;
|
||||
float min_int = 0.0001;
|
||||
//typedef pair<unsigned,unsigned> diff;//first the sentence that changes, second is the new 1best for this sentence
|
||||
//list<threshold> thresholdlist;
|
||||
|
||||
map<float,diff_t> thresholdmap;
|
||||
thresholdmap[MIN_FLOAT]=diff_t();
|
||||
thresholdmap[MIN_FLOAT] = diff_t();
|
||||
vector<unsigned> first1best; // the vector of nbests for x=-inf
|
||||
for(unsigned int S=0; S<size(); S++) {
|
||||
map<float,diff_t >::iterator previnserted=thresholdmap.begin();
|
||||
for (unsigned int S = 0; S < size(); S++) {
|
||||
map<float,diff_t >::iterator previnserted = thresholdmap.begin();
|
||||
// First, we determine the translation with the best feature score
|
||||
// for each sentence and each value of x.
|
||||
//cerr << "Sentence " << S << endl;
|
||||
multimap<float,unsigned> gradient;
|
||||
multimap<float, unsigned> gradient;
|
||||
vector<float> f0;
|
||||
f0.resize(FData->get(S).size());
|
||||
for(unsigned j=0; j<FData->get(S).size(); j++) {
|
||||
gradient.insert(pair<float,unsigned>(direction*(FData->get(S,j)),j));//gradient of the feature function for this particular target sentence
|
||||
f0[j]=origin*FData->get(S,j);//compute the feature function at the origin point
|
||||
for (unsigned j = 0; j < FData->get(S).size(); j++) {
|
||||
// gradient of the feature function for this particular target sentence
|
||||
gradient.insert(pair<float, unsigned>(direction * (FData->get(S,j)), j));
|
||||
// compute the feature function at the origin point
|
||||
f0[j] = origin * FData->get(S, j);
|
||||
}
|
||||
// Now let's compute the 1best for each value of x.
|
||||
|
||||
// vector<pair<float,unsigned> > onebest;
|
||||
|
||||
|
||||
multimap<float,unsigned>::iterator gradientit=gradient.begin();
|
||||
multimap<float,unsigned>::iterator highest_f0=gradient.begin();
|
||||
multimap<float,unsigned>::iterator gradientit = gradient.begin();
|
||||
multimap<float,unsigned>::iterator highest_f0 = gradient.begin();
|
||||
|
||||
float smallest=gradientit->first;//smallest gradient
|
||||
float smallest = gradientit->first;//smallest gradient
|
||||
// Several candidates can have the lowest slope (e.g., for word penalty where the gradient is an integer).
|
||||
|
||||
gradientit++;
|
||||
while(gradientit!=gradient.end()&&gradientit->first==smallest) {
|
||||
while (gradientit != gradient.end() && gradientit->first == smallest) {
|
||||
// cerr<<"ni"<<gradientit->second<<endl;;
|
||||
//cerr<<"fos"<<f0[gradientit->second]<<" "<<f0[index]<<" "<<index<<endl;
|
||||
if(f0[gradientit->second]>f0[highest_f0->second])
|
||||
highest_f0=gradientit;//the highest line is the one with he highest f0
|
||||
if (f0[gradientit->second] > f0[highest_f0->second])
|
||||
highest_f0 = gradientit;//the highest line is the one with he highest f0
|
||||
gradientit++;
|
||||
}
|
||||
|
||||
@ -139,27 +141,27 @@ statscore_t Optimizer::LineOptimize(const Point& origin,const Point& direction,P
|
||||
|
||||
// Now we look for the intersections points indicating a change of 1 best.
|
||||
// We use the fact that the function is convex, which means that the gradient can only go up.
|
||||
while(gradientit!=gradient.end()) {
|
||||
map<float,unsigned>::iterator leftmost=gradientit;
|
||||
float m=gradientit->first;
|
||||
float b=f0[gradientit->second];
|
||||
multimap<float,unsigned>::iterator gradientit2=gradientit;
|
||||
while (gradientit != gradient.end()) {
|
||||
map<float,unsigned>::iterator leftmost = gradientit;
|
||||
float m = gradientit->first;
|
||||
float b = f0[gradientit->second];
|
||||
multimap<float,unsigned>::iterator gradientit2 = gradientit;
|
||||
gradientit2++;
|
||||
float leftmostx=MAX_FLOAT;
|
||||
for(; gradientit2!=gradient.end(); gradientit2++) {
|
||||
float leftmostx = MAX_FLOAT;
|
||||
for (; gradientit2 != gradient.end(); gradientit2++) {
|
||||
//cerr<<"--"<<d++<<' '<<gradientit2->first<<' '<<gradientit2->second<<endl;
|
||||
// Look for all candidate with a gradient bigger than the current one, and
|
||||
// find the one with the leftmost intersection.
|
||||
float curintersect;
|
||||
if(m!=gradientit2->first) {
|
||||
curintersect=intersect(m,b,gradientit2->first,f0[gradientit2->second]);
|
||||
if (m != gradientit2->first) {
|
||||
curintersect = intersect(m, b, gradientit2->first, f0[gradientit2->second]);
|
||||
//cerr << "curintersect: " << curintersect << " leftmostx: " << leftmostx << endl;
|
||||
if(curintersect<=leftmostx) {
|
||||
if (curintersect<=leftmostx) {
|
||||
// We have found an intersection to the left of the leftmost we had so far.
|
||||
// We might have curintersect==leftmostx for example is 2 candidates are the same
|
||||
// in that case its better its better to update leftmost to gradientit2 to avoid some recomputing later.
|
||||
leftmostx=curintersect;
|
||||
leftmost=gradientit2; // this is the new reference
|
||||
leftmostx = curintersect;
|
||||
leftmost = gradientit2; // this is the new reference
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -168,15 +170,15 @@ statscore_t Optimizer::LineOptimize(const Point& origin,const Point& direction,P
|
||||
// The rightmost bestindex is the one with the highest slope.
|
||||
|
||||
// They should be equal but there might be.
|
||||
assert(abs(leftmost->first-gradient.rbegin()->first)<0.0001);
|
||||
assert(abs(leftmost->first-gradient.rbegin()->first) < 0.0001);
|
||||
// A small difference due to rounding error
|
||||
break;
|
||||
}
|
||||
// We have found the next intersection!
|
||||
|
||||
pair<unsigned,unsigned> newd(S,leftmost->second);//new onebest for Sentence S is leftmost->second
|
||||
pair<unsigned,unsigned> newd(S, leftmost->second);//new onebest for Sentence S is leftmost->second
|
||||
|
||||
if(leftmostx-previnserted->first<min_int) {
|
||||
if (leftmostx-previnserted->first < min_int) {
|
||||
// Require that the intersection Point be at least min_int to the right of the previous
|
||||
// one (for this sentence). If not, we replace the previous intersection Point with
|
||||
// this one.
|
||||
@ -186,45 +188,45 @@ statscore_t Optimizer::LineOptimize(const Point& origin,const Point& direction,P
|
||||
// be wrong we are going to replace previnsert by the new one because we do not want to keep
|
||||
// 2 very close threshold: if the minima is there it could be an artifact.
|
||||
|
||||
map<float,diff_t>::iterator tit=thresholdmap.find(leftmostx);
|
||||
if(tit==previnserted) {
|
||||
map<float,diff_t>::iterator tit = thresholdmap.find(leftmostx);
|
||||
if (tit == previnserted) {
|
||||
// The threshold is the same as before can happen if 2 candidates are the same for example.
|
||||
assert(previnserted->second.back().first==newd.first);
|
||||
assert(previnserted->second.back().first == newd.first);
|
||||
previnserted->second.back()=newd; // just replace the 1 best for sentence S
|
||||
// previnsert doesn't change
|
||||
} else {
|
||||
|
||||
if(tit==thresholdmap.end()) {
|
||||
if (tit == thresholdmap.end()) {
|
||||
thresholdmap[leftmostx]=previnserted->second; // We keep the diffs at previnsert
|
||||
thresholdmap.erase(previnserted); // erase old previnsert
|
||||
previnserted=thresholdmap.find(leftmostx); // point previnsert to the new threshold
|
||||
previnserted = thresholdmap.find(leftmostx); // point previnsert to the new threshold
|
||||
previnserted->second.back()=newd; // We update the diff for sentence S
|
||||
// Threshold already exists but is not the previous one.
|
||||
} else {
|
||||
// We append the diffs in previnsert to tit before destroying previnsert.
|
||||
tit->second.insert(tit->second.end(),previnserted->second.begin(),previnserted->second.end());
|
||||
assert(tit->second.back().first==newd.first);
|
||||
assert(tit->second.back().first == newd.first);
|
||||
tit->second.back()=newd; // change diff for sentence S
|
||||
thresholdmap.erase(previnserted); // erase old previnsert
|
||||
previnserted=tit; // point previnsert to the new threshold
|
||||
previnserted = tit; // point previnsert to the new threshold
|
||||
}
|
||||
}
|
||||
|
||||
assert(previnserted != thresholdmap.end());
|
||||
} else { //normal insertion process
|
||||
previnserted=AddThreshold(thresholdmap,leftmostx,newd);
|
||||
previnserted = AddThreshold(thresholdmap, leftmostx, newd);
|
||||
}
|
||||
gradientit=leftmost;
|
||||
} // while(gradientit!=gradient.end()){
|
||||
gradientit = leftmost;
|
||||
} // while (gradientit!=gradient.end()){
|
||||
} // loop on S
|
||||
|
||||
// Now the thresholdlist is up to date: it contains a list of all the parameter_ts where
|
||||
// the function changed its value, along with the nbest list for the interval after each threshold.
|
||||
|
||||
map<float,diff_t >::iterator thrit;
|
||||
if(verboselevel()>6) {
|
||||
cerr << "Thresholds:(" <<thresholdmap.size()<<")"<< endl;
|
||||
for (thrit = thresholdmap.begin(); thrit!=thresholdmap.end(); thrit++) {
|
||||
if (verboselevel() > 6) {
|
||||
cerr << "Thresholds:(" << thresholdmap.size() << ")" << endl;
|
||||
for (thrit = thresholdmap.begin(); thrit != thresholdmap.end(); thrit++) {
|
||||
cerr << "x: " << thrit->first << " diffs";
|
||||
for (size_t j = 0; j < thrit->second.size(); ++j) {
|
||||
cerr << " " <<thrit->second[j].first << "," << thrit->second[j].second;
|
||||
@ -234,20 +236,20 @@ statscore_t Optimizer::LineOptimize(const Point& origin,const Point& direction,P
|
||||
}
|
||||
|
||||
// Last thing to do is compute the Stat score (i.e., BLEU) and find the minimum.
|
||||
thrit=thresholdmap.begin();
|
||||
thrit = thresholdmap.begin();
|
||||
++thrit; // first diff corrrespond to MIN_FLOAT and first1best
|
||||
diffs_t diffs;
|
||||
for(; thrit!=thresholdmap.end(); thrit++)
|
||||
for (; thrit != thresholdmap.end(); thrit++)
|
||||
diffs.push_back(thrit->second);
|
||||
vector<statscore_t> scores=GetIncStatScore(first1best,diffs);
|
||||
vector<statscore_t> scores = GetIncStatScore(first1best, diffs);
|
||||
|
||||
thrit=thresholdmap.begin();
|
||||
statscore_t bestscore=MIN_FLOAT;
|
||||
float bestx=MIN_FLOAT;
|
||||
thrit = thresholdmap.begin();
|
||||
statscore_t bestscore = MIN_FLOAT;
|
||||
float bestx = MIN_FLOAT;
|
||||
|
||||
// We skipped the first el of thresholdlist but GetIncStatScore return 1 more for first1best.
|
||||
assert(scores.size()==thresholdmap.size());
|
||||
for(unsigned int sc=0; sc!=scores.size(); sc++) {
|
||||
assert(scores.size() == thresholdmap.size());
|
||||
for (unsigned int sc = 0; sc != scores.size(); sc++) {
|
||||
//cerr << "x=" << thrit->first << " => " << scores[sc] << endl;
|
||||
if (scores[sc] > bestscore) {
|
||||
// This is the score for the interval [lit2->first, (lit2+1)->first]
|
||||
@ -274,7 +276,7 @@ statscore_t Optimizer::LineOptimize(const Point& origin,const Point& direction,P
|
||||
if (leftx == MIN_FLOAT) {
|
||||
bestx = rightx-1000;
|
||||
} else if (rightx == MAX_FLOAT) {
|
||||
bestx = leftx+0.1;
|
||||
bestx = leftx + 0.1;
|
||||
} else {
|
||||
bestx = 0.5 * (rightx + leftx);
|
||||
}
|
||||
@ -283,39 +285,39 @@ statscore_t Optimizer::LineOptimize(const Point& origin,const Point& direction,P
|
||||
++thrit;
|
||||
}
|
||||
|
||||
if(abs(bestx)<0.00015) {
|
||||
if (abs(bestx) < 0.00015) {
|
||||
// The origin of the line is the best point! We put it back at 0
|
||||
// so we do not propagate rounding erros.
|
||||
bestx=0.0;
|
||||
bestx = 0.0;
|
||||
|
||||
// Finally, we manage to extract the best score;
|
||||
// now we convert bestx (position on the line) to a point.
|
||||
if(verboselevel()>4)
|
||||
cerr<<"best point on line at origin"<<endl;
|
||||
if (verboselevel() > 4)
|
||||
cerr << "best point on line at origin" << endl;
|
||||
}
|
||||
if(verboselevel()>3) {
|
||||
if (verboselevel() > 3) {
|
||||
// cerr<<"end Lineopt, bestx="<<bestx<<endl;
|
||||
}
|
||||
bestpoint=direction*bestx+origin;
|
||||
bestpoint = direction * bestx + origin;
|
||||
bestpoint.SetScore(bestscore);
|
||||
return bestscore;
|
||||
}
|
||||
|
||||
void Optimizer::Get1bests(const Point& P,vector<unsigned>& bests)const
|
||||
void Optimizer::Get1bests(const Point& P, vector<unsigned>& bests) const
|
||||
{
|
||||
assert(FData);
|
||||
bests.clear();
|
||||
bests.resize(size());
|
||||
|
||||
for(unsigned i=0; i<size(); i++) {
|
||||
float bestfs=MIN_FLOAT;
|
||||
unsigned idx=0;
|
||||
for (unsigned i = 0; i < size(); i++) {
|
||||
float bestfs = MIN_FLOAT;
|
||||
unsigned idx = 0;
|
||||
unsigned j;
|
||||
for(j=0; j<FData->get(i).size(); j++) {
|
||||
float curfs=P*FData->get(i,j);
|
||||
if(curfs>bestfs) {
|
||||
bestfs=curfs;
|
||||
idx=j;
|
||||
for (j = 0; j < FData->get(i).size(); j++) {
|
||||
float curfs = P * FData->get(i, j);
|
||||
if (curfs > bestfs) {
|
||||
bestfs = curfs;
|
||||
idx = j;
|
||||
}
|
||||
}
|
||||
bests[i]=idx;
|
||||
@ -323,18 +325,18 @@ void Optimizer::Get1bests(const Point& P,vector<unsigned>& bests)const
|
||||
|
||||
}
|
||||
|
||||
statscore_t Optimizer::Run(Point& P)const
|
||||
statscore_t Optimizer::Run(Point& P) const
|
||||
{
|
||||
if(!FData) {
|
||||
cerr<<"error trying to optimize without Features loaded"<<endl;
|
||||
if (!FData) {
|
||||
cerr << "error trying to optimize without Features loaded" << endl;
|
||||
exit(2);
|
||||
}
|
||||
if(!scorer) {
|
||||
cerr<<"error trying to optimize without a Scorer loaded"<<endl;
|
||||
if (!scorer) {
|
||||
cerr << "error trying to optimize without a Scorer loaded" << endl;
|
||||
exit(2);
|
||||
}
|
||||
if (scorer->getReferenceSize()!=FData->size()) {
|
||||
cerr<<"error length mismatch between feature file and score file"<<endl;
|
||||
if (scorer->getReferenceSize() != FData->size()) {
|
||||
cerr << "error length mismatch between feature file and score file" << endl;
|
||||
exit(2);
|
||||
}
|
||||
|
||||
@ -354,108 +356,108 @@ statscore_t Optimizer::Run(Point& P)const
|
||||
}
|
||||
|
||||
|
||||
vector<statscore_t> Optimizer::GetIncStatScore(vector<unsigned> thefirst,vector<vector <pair<unsigned,unsigned> > > thediffs)const
|
||||
vector<statscore_t> Optimizer::GetIncStatScore(vector<unsigned> thefirst, vector<vector <pair<unsigned,unsigned> > > thediffs) const
|
||||
{
|
||||
assert(scorer);
|
||||
|
||||
vector<statscore_t> theres;
|
||||
|
||||
scorer->score(thefirst,thediffs,theres);
|
||||
scorer->score(thefirst, thediffs, theres);
|
||||
return theres;
|
||||
}
|
||||
|
||||
|
||||
statscore_t SimpleOptimizer::TrueRun(Point& P)const
|
||||
statscore_t SimpleOptimizer::TrueRun(Point& P) const
|
||||
{
|
||||
statscore_t prevscore=0;
|
||||
statscore_t bestscore=MIN_FLOAT;
|
||||
statscore_t prevscore = 0;
|
||||
statscore_t bestscore = MIN_FLOAT;
|
||||
Point best;
|
||||
|
||||
// If P is already defined and provides a score,
|
||||
// We must improve over this score.
|
||||
if(P.GetScore() > bestscore) {
|
||||
if (P.GetScore() > bestscore) {
|
||||
bestscore = P.GetScore();
|
||||
best = P;
|
||||
}
|
||||
|
||||
int nrun=0;
|
||||
int nrun = 0;
|
||||
do {
|
||||
++nrun;
|
||||
if(verboselevel()>2&&nrun>1)
|
||||
cerr<<"last diff="<<bestscore-prevscore<<" nrun "<<nrun<<endl;
|
||||
prevscore=bestscore;
|
||||
if (verboselevel() > 2 && nrun > 1)
|
||||
cerr << "last diff=" << bestscore-prevscore << " nrun " << nrun << endl;
|
||||
prevscore = bestscore;
|
||||
|
||||
Point linebest;
|
||||
|
||||
for(unsigned int d=0; d<Point::getdim()+number_of_random_directions; d++) {
|
||||
if(verboselevel()>4) {
|
||||
for (unsigned int d = 0; d < Point::getdim()+number_of_random_directions; d++) {
|
||||
if (verboselevel() > 4) {
|
||||
// cerr<<"minimizing along direction "<<d<<endl;
|
||||
cerr<<"starting point: " << P << " => " << prevscore << endl;
|
||||
cerr << "starting point: " << P << " => " << prevscore << endl;
|
||||
}
|
||||
Point direction;
|
||||
if (d<Point::getdim()) { // regular updates along one dimension
|
||||
for(unsigned int i=0; i<Point::getdim(); i++)
|
||||
if (d < Point::getdim()) { // regular updates along one dimension
|
||||
for (unsigned int i = 0; i < Point::getdim(); i++)
|
||||
direction[i]=0.0;
|
||||
direction[d]=1.0;
|
||||
}
|
||||
else { // random direction update
|
||||
direction.Randomize();
|
||||
}
|
||||
statscore_t curscore=LineOptimize(P,direction,linebest);//find the minimum on the line
|
||||
if(verboselevel()>5) {
|
||||
cerr<<"direction: "<< d << " => " << curscore << endl;
|
||||
cerr<<"\tending point: "<< linebest << " => " << curscore << endl;
|
||||
statscore_t curscore = LineOptimize(P, direction, linebest);//find the minimum on the line
|
||||
if (verboselevel() > 5) {
|
||||
cerr << "direction: " << d << " => " << curscore << endl;
|
||||
cerr << "\tending point: "<< linebest << " => " << curscore << endl;
|
||||
}
|
||||
if(curscore>bestscore) {
|
||||
bestscore=curscore;
|
||||
best=linebest;
|
||||
if(verboselevel()>3) {
|
||||
cerr<<"new best dir:"<<d<<" ("<<nrun<<")"<<endl;
|
||||
cerr<<"new best Point "<<best<< " => " <<curscore<<endl;
|
||||
if (curscore > bestscore) {
|
||||
bestscore = curscore;
|
||||
best = linebest;
|
||||
if (verboselevel() > 3) {
|
||||
cerr << "new best dir:" << d << " (" << nrun << ")" << endl;
|
||||
cerr << "new best Point " << best << " => " << curscore << endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
P=best; //update the current vector with the best point on all line tested
|
||||
if(verboselevel()>3)
|
||||
cerr<<nrun<<"\t"<<P<<endl;
|
||||
} while(bestscore-prevscore>kEPS);
|
||||
P = best; //update the current vector with the best point on all line tested
|
||||
if (verboselevel() > 3)
|
||||
cerr << nrun << "\t" << P << endl;
|
||||
} while (bestscore-prevscore > kEPS);
|
||||
|
||||
if(verboselevel()>2) {
|
||||
cerr<<"end Powell Algo, nrun="<<nrun<<endl;
|
||||
cerr<<"last diff="<<bestscore-prevscore<<endl;
|
||||
cerr<<"\t"<<P<<endl;
|
||||
if (verboselevel() > 2) {
|
||||
cerr << "end Powell Algo, nrun=" << nrun << endl;
|
||||
cerr << "last diff=" << bestscore-prevscore << endl;
|
||||
cerr << "\t" << P << endl;
|
||||
}
|
||||
return bestscore;
|
||||
}
|
||||
|
||||
statscore_t RandomDirectionOptimizer::TrueRun(Point& P)const
|
||||
statscore_t RandomDirectionOptimizer::TrueRun(Point& P) const
|
||||
{
|
||||
statscore_t prevscore = P.GetScore();
|
||||
|
||||
// do specified number of random direction optimizations
|
||||
unsigned int nrun = 0;
|
||||
unsigned int nrun_no_change = 0;
|
||||
for(; nrun_no_change<number_of_random_directions; nrun++, nrun_no_change++)
|
||||
for (; nrun_no_change < number_of_random_directions; nrun++, nrun_no_change++)
|
||||
{
|
||||
// choose a random direction in which to optimize
|
||||
Point direction;
|
||||
direction.Randomize();
|
||||
|
||||
//find the minimum on the line
|
||||
statscore_t score=LineOptimize(P,direction,P);
|
||||
if(verboselevel()>4) {
|
||||
cerr<<"direction: "<< direction << " => " << score;
|
||||
cerr<<" ("<< (score-prevscore) << ")" << endl;
|
||||
cerr<<"\tending point: "<< P << " => " << score << endl;
|
||||
statscore_t score = LineOptimize(P, direction, P);
|
||||
if (verboselevel() > 4) {
|
||||
cerr << "direction: " << direction << " => " << score;
|
||||
cerr << " (" << (score-prevscore) << ")" << endl;
|
||||
cerr << "\tending point: " << P << " => " << score << endl;
|
||||
}
|
||||
|
||||
if (score-prevscore > kEPS)
|
||||
nrun_no_change=0;
|
||||
nrun_no_change = 0;
|
||||
prevscore = score;
|
||||
}
|
||||
|
||||
if(verboselevel()>2) {
|
||||
cerr<<"end Powell Algo, nrun="<<nrun<<endl;
|
||||
if (verboselevel() > 2) {
|
||||
cerr << "end Powell Algo, nrun=" << nrun << endl;
|
||||
}
|
||||
return prevscore;
|
||||
}
|
||||
@ -475,7 +477,7 @@ vector<string> OptimizerFactory::typenames;
|
||||
|
||||
void OptimizerFactory::SetTypeNames()
|
||||
{
|
||||
if(typenames.empty()) {
|
||||
if (typenames.empty()) {
|
||||
typenames.resize(NOPTIMIZER);
|
||||
typenames[POWELL]="powell";
|
||||
typenames[RANDOM_DIRECTION]="random-direction";
|
||||
@ -485,7 +487,7 @@ void OptimizerFactory::SetTypeNames()
|
||||
}
|
||||
vector<string> OptimizerFactory::GetTypeNames()
|
||||
{
|
||||
if(typenames.empty())
|
||||
if (typenames.empty())
|
||||
SetTypeNames();
|
||||
return typenames;
|
||||
}
|
||||
@ -493,38 +495,38 @@ vector<string> OptimizerFactory::GetTypeNames()
|
||||
OptimizerFactory::OptType OptimizerFactory::GetOType(string type)
|
||||
{
|
||||
unsigned int thetype;
|
||||
if(typenames.empty())
|
||||
if (typenames.empty())
|
||||
SetTypeNames();
|
||||
for(thetype=0; thetype<typenames.size(); thetype++)
|
||||
if(typenames[thetype]==type)
|
||||
for (thetype = 0; thetype < typenames.size(); thetype++)
|
||||
if (typenames[thetype] == type)
|
||||
break;
|
||||
return((OptType)thetype);
|
||||
}
|
||||
|
||||
Optimizer* OptimizerFactory::BuildOptimizer(unsigned dim,vector<unsigned> i2o,vector<parameter_t> start,string type, unsigned int nrandom)
|
||||
Optimizer* OptimizerFactory::BuildOptimizer(unsigned dim, vector<unsigned> i2o, vector<parameter_t> start, string type, unsigned int nrandom)
|
||||
{
|
||||
OptType T=GetOType(type);
|
||||
if(T==NOPTIMIZER) {
|
||||
cerr<<"Error: unknown Optimizer type "<<type<<endl;
|
||||
cerr<<"Known Algorithm are:"<<endl;
|
||||
OptType T = GetOType(type);
|
||||
if (T == NOPTIMIZER) {
|
||||
cerr << "Error: unknown Optimizer type " << type << endl;
|
||||
cerr << "Known Algorithm are:" << endl;
|
||||
unsigned int thetype;
|
||||
for(thetype=0; thetype<typenames.size(); thetype++)
|
||||
cerr<<typenames[thetype]<<endl;
|
||||
for (thetype = 0; thetype < typenames.size(); thetype++)
|
||||
cerr << typenames[thetype] << endl;
|
||||
throw ("unknown Optimizer Type");
|
||||
}
|
||||
|
||||
switch((OptType)T) {
|
||||
switch ((OptType)T) {
|
||||
case POWELL:
|
||||
return new SimpleOptimizer(dim,i2o,start,nrandom);
|
||||
return new SimpleOptimizer(dim, i2o, start, nrandom);
|
||||
break;
|
||||
case RANDOM_DIRECTION:
|
||||
return new RandomDirectionOptimizer(dim,i2o,start,nrandom);
|
||||
return new RandomDirectionOptimizer(dim, i2o, start, nrandom);
|
||||
break;
|
||||
case RANDOM:
|
||||
return new RandomOptimizer(dim,i2o,start,nrandom);
|
||||
return new RandomOptimizer(dim, i2o, start, nrandom);
|
||||
break;
|
||||
default:
|
||||
cerr<<"Error: unknown optimizer"<<type<<endl;
|
||||
cerr << "Error: unknown optimizer" << type << endl;
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
@ -9,7 +9,6 @@
|
||||
#include "Point.h"
|
||||
#include "Types.h"
|
||||
|
||||
|
||||
typedef float featurescore;
|
||||
|
||||
using namespace std;
|
||||
@ -25,45 +24,45 @@ protected:
|
||||
unsigned int number_of_random_directions;
|
||||
|
||||
public:
|
||||
Optimizer(unsigned Pd,vector<unsigned> i2O,vector<parameter_t> start,unsigned int nrandom);
|
||||
Optimizer(unsigned Pd, vector<unsigned> i2O, vector<parameter_t> start, unsigned int nrandom);
|
||||
void SetScorer(Scorer *_scorer);
|
||||
void SetFData(FeatureData *_FData);
|
||||
virtual ~Optimizer();
|
||||
|
||||
unsigned size()const {
|
||||
return (FData?FData->size():0);
|
||||
unsigned size() const {
|
||||
return FData ? FData->size() : 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Generic wrapper around TrueRun to check a few things. Non virtual.
|
||||
*/
|
||||
statscore_t Run(Point&)const;
|
||||
statscore_t Run(Point&) const;
|
||||
|
||||
/**
|
||||
* Main function that performs an optimization.
|
||||
*/
|
||||
virtual statscore_t TrueRun(Point&)const=0;
|
||||
virtual statscore_t TrueRun(Point&) const = 0;
|
||||
|
||||
/**
|
||||
* Given a set of lambdas, get the nbest for each sentence.
|
||||
*/
|
||||
void Get1bests(const Point& param,vector<unsigned>& bests)const;
|
||||
void Get1bests(const Point& param,vector<unsigned>& bests) const;
|
||||
|
||||
/**
|
||||
* Given a set of nbests, get the Statistical score.
|
||||
*/
|
||||
statscore_t GetStatScore(const vector<unsigned>& nbests)const {
|
||||
statscore_t GetStatScore(const vector<unsigned>& nbests) const {
|
||||
return scorer->score(nbests);
|
||||
}
|
||||
|
||||
statscore_t GetStatScore(const Point& param)const;
|
||||
statscore_t GetStatScore(const Point& param) const;
|
||||
|
||||
vector<statscore_t > GetIncStatScore(vector<unsigned> ref,vector<vector <pair<unsigned,unsigned> > >)const;
|
||||
vector<statscore_t> GetIncStatScore(vector<unsigned> ref, vector<vector<pair<unsigned,unsigned> > >) const;
|
||||
|
||||
/**
|
||||
* Get the optimal Lambda and the best score in a particular direction from a given Point.
|
||||
*/
|
||||
statscore_t LineOptimize(const Point& start,const Point& direction,Point& best)const;
|
||||
statscore_t LineOptimize(const Point& start, const Point& direction, Point& best) const;
|
||||
};
|
||||
|
||||
|
||||
@ -71,51 +70,57 @@ public:
|
||||
* Default basic optimizer.
|
||||
* This class implements Powell's method.
|
||||
*/
|
||||
class SimpleOptimizer: public Optimizer
|
||||
class SimpleOptimizer : public Optimizer
|
||||
{
|
||||
private:
|
||||
const float kEPS;
|
||||
public:
|
||||
SimpleOptimizer(unsigned dim,vector<unsigned> i2O,vector<parameter_t> start,unsigned int nrandom): Optimizer(dim, i2O, start,nrandom), kEPS(0.0001) {}
|
||||
virtual statscore_t TrueRun(Point&)const;
|
||||
SimpleOptimizer(unsigned dim, vector<unsigned> i2O, vector<parameter_t> start, unsigned int nrandom)
|
||||
: Optimizer(dim, i2O, start,nrandom), kEPS(0.0001) {}
|
||||
virtual statscore_t TrueRun(Point&) const;
|
||||
};
|
||||
|
||||
/**
|
||||
* An optimizer with random directions.
|
||||
*/
|
||||
class RandomDirectionOptimizer: public Optimizer
|
||||
class RandomDirectionOptimizer : public Optimizer
|
||||
{
|
||||
private:
|
||||
const float kEPS;
|
||||
public:
|
||||
RandomDirectionOptimizer(unsigned dim,vector<unsigned> i2O,vector<parameter_t> start,unsigned int nrandom): Optimizer(dim,i2O,start,nrandom), kEPS(0.0001) {}
|
||||
virtual statscore_t TrueRun(Point&)const;
|
||||
RandomDirectionOptimizer(unsigned dim, vector<unsigned> i2O, vector<parameter_t> start, unsigned int nrandom)
|
||||
: Optimizer(dim, i2O, start, nrandom), kEPS(0.0001) {}
|
||||
virtual statscore_t TrueRun(Point&) const;
|
||||
};
|
||||
|
||||
/**
|
||||
* Dumb baseline optimizer: just picks a random point and quits.
|
||||
*/
|
||||
class RandomOptimizer: public Optimizer
|
||||
class RandomOptimizer : public Optimizer
|
||||
{
|
||||
public:
|
||||
RandomOptimizer(unsigned dim,vector<unsigned> i2O,vector<parameter_t> start, unsigned int nrandom): Optimizer(dim,i2O,start,nrandom) {}
|
||||
virtual statscore_t TrueRun(Point&)const;
|
||||
RandomOptimizer(unsigned dim, vector<unsigned> i2O, vector<parameter_t> start, unsigned int nrandom)
|
||||
: Optimizer(dim, i2O, start, nrandom) {}
|
||||
virtual statscore_t TrueRun(Point&) const;
|
||||
};
|
||||
|
||||
class OptimizerFactory
|
||||
{
|
||||
public:
|
||||
// unsigned dim;
|
||||
//Point Start;
|
||||
static vector<string> GetTypeNames();
|
||||
static Optimizer* BuildOptimizer(unsigned dim,vector<unsigned>tooptimize,vector<parameter_t> start,string type,unsigned int nrandom);
|
||||
static Optimizer* BuildOptimizer(unsigned dim, vector<unsigned> tooptimize, vector<parameter_t> start, string type, unsigned int nrandom);
|
||||
|
||||
private:
|
||||
OptimizerFactory() {}
|
||||
~OptimizerFactory() {}
|
||||
|
||||
// Add new optimizer here BEFORE NOPTIMZER
|
||||
enum OptType {POWELL=0,RANDOM_DIRECTION=1,RANDOM,NOPTIMIZER};
|
||||
enum OptType {
|
||||
POWELL = 0,
|
||||
RANDOM_DIRECTION = 1,
|
||||
RANDOM,NOPTIMIZER
|
||||
};
|
||||
|
||||
static OptType GetOType(string);
|
||||
static vector<string> typenames;
|
||||
static void SetTypeNames();
|
||||
|
Loading…
Reference in New Issue
Block a user