mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-26 13:23:25 +03:00
1. remove all code for MetaFeature from mira.
2. in ShowWeights(), all print out dense feature weights. Don't print 'sparse' for sparse feature functions. All features functions can contains dense and sparse
This commit is contained in:
parent
b322e78a38
commit
f04ec4c56d
@ -591,11 +591,6 @@
|
||||
<type>1</type>
|
||||
<locationURI>PARENT-3-PROJECT_LOC/moses/LexicalReorderingTable.h</locationURI>
|
||||
</link>
|
||||
<link>
|
||||
<name>Makefile.am</name>
|
||||
<type>1</type>
|
||||
<locationURI>PARENT-3-PROJECT_LOC/moses/Makefile.am</locationURI>
|
||||
</link>
|
||||
<link>
|
||||
<name>Manager.cpp</name>
|
||||
<type>1</type>
|
||||
|
118
mira/Main.cpp
118
mira/Main.cpp
@ -524,19 +524,7 @@ int main(int argc, char** argv) {
|
||||
// get reference to feature functions
|
||||
const vector<FeatureFunction*> &featureFunctions = FeatureFunction::GetFeatureFunctions();
|
||||
ScoreComponentCollection initialWeights = decoder->getWeights();
|
||||
|
||||
bool tuneMetaFeature = false;
|
||||
const vector<const FeatureFunction*>& sparseProducers = staticData.GetSparseProducers();
|
||||
for (unsigned i = 0; i < sparseProducers.size(); ++i) {
|
||||
float spWeight = sparseProducers[i]->GetSparseProducerWeight();
|
||||
if (spWeight != 1.0) {
|
||||
tuneMetaFeature = true;
|
||||
cerr << "Rank " << rank << ", sparse Producer " <<
|
||||
sparseProducers[i]->GetScoreProducerDescription()
|
||||
<< " weight: " << spWeight << endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (add2lm != 0) {
|
||||
const LMList& lmList_new = staticData.GetLMList();
|
||||
for (LMList::const_iterator i = lmList_new.begin(); i != lmList_new.end(); ++i) {
|
||||
@ -693,22 +681,6 @@ int main(int argc, char** argv) {
|
||||
decoder->printBleuFeatureHistory(cerr);
|
||||
}
|
||||
|
||||
if (tuneMetaFeature) {
|
||||
// initialise meta feature
|
||||
MetaFeatureProducer *m = staticData.GetMetaFeatureProducer();
|
||||
FeatureFunction* ff = const_cast<FeatureFunction*>(sparseProducers[0]);
|
||||
if (sparseProducers[0]->GetScoreProducerDescription().compare("wt") == 0) {
|
||||
WordTranslationFeature* wt =
|
||||
static_cast<WordTranslationFeature*>(ff);
|
||||
mosesWeights.Assign(m, wt->GetSparseProducerWeight());
|
||||
}
|
||||
else if (sparseProducers[0]->GetScoreProducerDescription().compare("pp") == 0) {
|
||||
PhrasePairFeature* pp =
|
||||
static_cast<PhrasePairFeature*>(ff);
|
||||
mosesWeights.Assign(m, pp->GetSparseProducerWeight());
|
||||
}
|
||||
}
|
||||
|
||||
// BATCHING: produce nbest lists for all input sentences in batch
|
||||
vector<float> oracleBleuScores;
|
||||
vector<float> oracleModelScores;
|
||||
@ -1260,62 +1232,6 @@ int main(int argc, char** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
if (kbest) {
|
||||
// If we are tuning a global weight for a sparse producer,
|
||||
// we must collapse the sparse features first (report weighted aggregate)
|
||||
if (tuneMetaFeature) {
|
||||
for (unsigned i = 0; i < sparseProducers.size(); ++i) {
|
||||
float spWeight = sparseProducers[i]->GetSparseProducerWeight();
|
||||
if (spWeight != 1.0) {
|
||||
MetaFeatureProducer *m = staticData.GetMetaFeatureProducer();
|
||||
for (size_t i=0; i < featureValuesHope.size(); ++i) {
|
||||
for (size_t j=0; j < featureValuesHope[i].size(); ++j) {
|
||||
// multiply sparse feature values with weights
|
||||
const FVector scores =
|
||||
featureValuesHope[i][j].GetVectorForProducer(sparseProducers[i]);
|
||||
const FVector &weights = staticData.GetAllWeights().GetScoresVector();
|
||||
float aggregate = scores.inner_product(weights);
|
||||
//cerr << "Rank " << rank << ", epoch " << epoch << ", sparse Producer " <<
|
||||
//sparseProducers[i]->GetScoreProducerDescription()
|
||||
//<< " aggregate: " << aggregate << endl;
|
||||
aggregate *= spWeight;
|
||||
//cerr << "Rank " << rank << ", epoch " << epoch << ", sparse Producer " <<
|
||||
//sparseProducers[i]->GetScoreProducerDescription()
|
||||
//<< " weighted aggregate: " << aggregate << endl;
|
||||
|
||||
// copy core features to a new collection, then assign aggregated sparse feature
|
||||
ScoreComponentCollection scoresAggregate;
|
||||
scoresAggregate.CoreAssign(featureValuesHope[i][j]);
|
||||
scoresAggregate.Assign(m, aggregate);
|
||||
featureValuesHope[i][j] = scoresAggregate;
|
||||
}
|
||||
}
|
||||
for (size_t i=0; i < featureValuesFear.size(); ++i) {
|
||||
for (size_t j=0; j < featureValuesFear[i].size(); ++j) {
|
||||
// multiply sparse feature values with weights
|
||||
const FVector scores =
|
||||
featureValuesFear[i][j].GetVectorForProducer(sparseProducers[i]);
|
||||
const FVector &weights = staticData.GetAllWeights().GetScoresVector();
|
||||
float aggregate = scores.inner_product(weights);
|
||||
aggregate *= spWeight;
|
||||
|
||||
// copy core features to a new collection, then assign aggregated sparse feature
|
||||
ScoreComponentCollection scoresAggregate;
|
||||
scoresAggregate.CoreAssign(featureValuesFear[i][j]);
|
||||
scoresAggregate.Assign(m, aggregate);
|
||||
featureValuesFear[i][j] = scoresAggregate;
|
||||
}
|
||||
}
|
||||
|
||||
cerr << "Rank " << rank << ", epoch " << epoch << ", new hope feature vector: " <<
|
||||
featureValuesHope[0][0] << endl;
|
||||
cerr << "Rank " << rank << ", epoch " << epoch << ", new fear feature vector: " <<
|
||||
featureValuesFear[0][0] << endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Run optimiser on batch:
|
||||
VERBOSE(1, "\nRank " << rank << ", epoch " << epoch << ", run optimiser:" << endl);
|
||||
size_t update_status = 1;
|
||||
@ -1381,34 +1297,6 @@ int main(int argc, char** argv) {
|
||||
if (debug)
|
||||
cerr << "Rank " << rank << ", epoch " << epoch << ", update: " << weightUpdate << endl;
|
||||
|
||||
if (tuneMetaFeature) {
|
||||
MetaFeatureProducer *m = staticData.GetMetaFeatureProducer();
|
||||
// update sparse producer weight
|
||||
// (NOTE: this currently doesn't work for more than one sparse producer)
|
||||
float metaWeightUpdate = weightUpdate.GetScoreForProducer(m);
|
||||
|
||||
const vector<const FeatureFunction*> sparseProducers = staticData.GetSparseProducers();
|
||||
FeatureFunction* ff = const_cast<FeatureFunction*>(sparseProducers[0]);
|
||||
if (sparseProducers[0]->GetScoreProducerDescription().compare("wt") == 0) {
|
||||
WordTranslationFeature* wt =
|
||||
static_cast<WordTranslationFeature*>(ff);
|
||||
float newWeight = wt->GetSparseProducerWeight();
|
||||
cerr << "Rank " << rank << ", epoch " << epoch << ", old meta weight: " << newWeight << endl;
|
||||
newWeight += metaWeightUpdate;
|
||||
wt->SetSparseProducerWeight(newWeight);
|
||||
cerr << "Rank " << rank << ", epoch " << epoch << ", new meta weight: " << newWeight << endl;
|
||||
}
|
||||
else if (sparseProducers[0]->GetScoreProducerDescription().compare("pp") == 0) {
|
||||
PhrasePairFeature* pp =
|
||||
static_cast<PhrasePairFeature*>(ff);
|
||||
float newWeight = pp->GetSparseProducerWeight();
|
||||
cerr << "Rank " << rank << ", epoch " << epoch << ", old meta weight: " << newWeight << endl;
|
||||
newWeight += metaWeightUpdate;
|
||||
pp->SetSparseProducerWeight(newWeight);
|
||||
cerr << "Rank " << rank << ", epoch " << epoch << ", new meta weight: " << newWeight << endl;
|
||||
}
|
||||
}
|
||||
|
||||
if (feature_confidence) {
|
||||
// update confidence counts based on weight update
|
||||
confidenceCounts.UpdateConfidenceCounts(weightUpdate, signed_counts);
|
||||
@ -1420,7 +1308,7 @@ int main(int argc, char** argv) {
|
||||
// apply weight update to Moses weights
|
||||
mosesWeights.PlusEquals(weightUpdate);
|
||||
|
||||
if (normaliseWeights && !tuneMetaFeature)
|
||||
if (normaliseWeights)
|
||||
mosesWeights.L1Normalise();
|
||||
|
||||
cumulativeWeights.PlusEquals(mosesWeights);
|
||||
@ -1432,7 +1320,7 @@ int main(int argc, char** argv) {
|
||||
|
||||
++numberOfUpdates;
|
||||
++numberOfUpdatesThisEpoch;
|
||||
if (averageWeights && !tuneMetaFeature) {
|
||||
if (averageWeights) {
|
||||
ScoreComponentCollection averageWeights(cumulativeWeights);
|
||||
if (accumulateWeights) {
|
||||
averageWeights.DivideEquals(numberOfUpdates);
|
||||
|
@ -187,21 +187,14 @@ bool ReadInput(IOWrapper &ioWrapper, InputTypeEnum inputType, InputType*& source
|
||||
}
|
||||
static void PrintFeatureWeight(const FeatureFunction* ff)
|
||||
{
|
||||
cout << ff->GetScoreProducerDescription() << "=";
|
||||
size_t numScoreComps = ff->GetNumScoreComponents();
|
||||
if (numScoreComps != 0) {
|
||||
vector<float> values = StaticData::Instance().GetAllWeights().GetScoresForProducer(ff);
|
||||
cout << ff->GetScoreProducerDescription() << "=";
|
||||
for (size_t i = 0; i < numScoreComps; ++i) {
|
||||
cout << " " << values[i];
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
else {
|
||||
if (ff->GetSparseProducerWeight() == 1)
|
||||
cout << ff->GetScoreProducerDescription() << "= sparse" << endl;
|
||||
else
|
||||
cout << ff->GetScoreProducerDescription() << "= " << ff->GetSparseProducerWeight() << endl;
|
||||
vector<float> values = StaticData::Instance().GetAllWeights().GetScoresForProducer(ff);
|
||||
for (size_t i = 0; i < numScoreComps; ++i) {
|
||||
cout << " " << values[i];
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
}
|
||||
|
||||
static void ShowWeights()
|
||||
|
@ -446,21 +446,13 @@ private:
|
||||
|
||||
static void PrintFeatureWeight(const FeatureFunction* ff)
|
||||
{
|
||||
cout << ff->GetScoreProducerDescription() << "=";
|
||||
size_t numScoreComps = ff->GetNumScoreComponents();
|
||||
if (numScoreComps != 0) {
|
||||
vector<float> values = StaticData::Instance().GetAllWeights().GetScoresForProducer(ff);
|
||||
cout << ff->GetScoreProducerDescription() << "=";
|
||||
for (size_t i = 0; i < numScoreComps; ++i) {
|
||||
cout << " " << values[i];
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
else {
|
||||
if (ff->GetSparseProducerWeight() == 1)
|
||||
cout << ff->GetScoreProducerDescription() << "= sparse" << endl;
|
||||
else
|
||||
cout << ff->GetScoreProducerDescription() << "= " << ff->GetSparseProducerWeight() << endl;
|
||||
vector<float> values = StaticData::Instance().GetAllWeights().GetScoresForProducer(ff);
|
||||
for (size_t i = 0; i < numScoreComps; ++i) {
|
||||
cout << " " << values[i];
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
|
||||
static void ShowWeights()
|
||||
|
@ -109,8 +109,6 @@ public:
|
||||
const std::string& GetScoreProducerDescription() const
|
||||
{ return m_description; }
|
||||
|
||||
virtual float GetSparseProducerWeight() const { return 1; }
|
||||
|
||||
virtual bool IsTuneable() const { return m_tuneable; }
|
||||
|
||||
//!
|
||||
|
@ -60,7 +60,6 @@ private:
|
||||
bool m_bitrigger;
|
||||
|
||||
bool m_biasFeature;
|
||||
float m_sparseProducerWeight;
|
||||
bool m_ignorePunctuation;
|
||||
|
||||
std::set<std::string> m_vocabSource;
|
||||
@ -93,9 +92,6 @@ public:
|
||||
, ScoreComponentCollection &scoreBreakdown
|
||||
, ScoreComponentCollection &estimatedFutureScore) const;
|
||||
|
||||
void SetSparseProducerWeight(float weight) { m_sparseProducerWeight = weight; }
|
||||
float GetSparseProducerWeight() const { return m_sparseProducerWeight; }
|
||||
|
||||
void AddFeature(ScoreComponentCollection* accumulator,
|
||||
StringPiece sourceTrigger, StringPiece sourceWord, StringPiece targetTrigger,
|
||||
StringPiece targetWord) const;
|
||||
|
@ -308,13 +308,6 @@ void Hypothesis::CalcScore(const SquareMatrix &futureScore)
|
||||
// FUTURE COST
|
||||
m_futureScore = futureScore.CalcFutureScore( m_sourceCompleted );
|
||||
|
||||
// Apply sparse producer weights
|
||||
const vector<const FeatureFunction*>& sparseProducers = StaticData::Instance().GetSparseProducers();
|
||||
for (unsigned i = 0; i < sparseProducers.size(); ++i) {
|
||||
float weight = sparseProducers[i]->GetSparseProducerWeight();
|
||||
m_scoreBreakdown.MultiplyEquals(sparseProducers[i], weight);
|
||||
}
|
||||
|
||||
// TOTAL
|
||||
m_totalScore = m_scoreBreakdown.GetWeightedScore() + m_futureScore;
|
||||
|
||||
|
@ -49,9 +49,6 @@ public:
|
||||
virtual void Evaluate(const TargetPhrase &targetPhrase
|
||||
, ScoreComponentCollection &scoreBreakdown
|
||||
, ScoreComponentCollection &estimatedFutureScore) const;
|
||||
|
||||
void SetSparseProducerWeight(float weight) { m_sparseProducerWeight = weight; }
|
||||
float GetSparseProducerWeight() const { return m_sparseProducerWeight; }
|
||||
|
||||
private:
|
||||
void AddFeatures(
|
||||
@ -59,7 +56,6 @@ private:
|
||||
const std::string& side, ScoreComponentCollection* scores) const ;
|
||||
FactorList m_sourceFactors;
|
||||
FactorList m_targetFactors;
|
||||
float m_sparseProducerWeight;
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -26,7 +26,6 @@ PhrasePairFeature::PhrasePairFeature(const std::string &line)
|
||||
m_simple = Scan<bool>(tokens[4]);
|
||||
m_sourceContext = Scan<bool>(tokens[5]);
|
||||
m_domainTrigger = Scan<bool>(tokens[6]);
|
||||
m_sparseProducerWeight = 1;
|
||||
m_ignorePunctuation = Scan<bool>(tokens[6]);
|
||||
|
||||
if (m_simple == 1) std::cerr << "using simple phrase pairs.. ";
|
||||
|
@ -26,7 +26,6 @@ class PhrasePairFeature: public StatelessFeatureFunction {
|
||||
bool m_simple;
|
||||
bool m_sourceContext;
|
||||
bool m_domainTrigger;
|
||||
float m_sparseProducerWeight;
|
||||
bool m_ignorePunctuation;
|
||||
CharHash m_punctuationHash;
|
||||
|
||||
@ -47,8 +46,6 @@ class PhrasePairFeature: public StatelessFeatureFunction {
|
||||
|
||||
bool Load(const std::string &filePathSource/*, const std::string &filePathTarget*/);
|
||||
|
||||
void SetSparseProducerWeight(float weight) { m_sparseProducerWeight = weight; }
|
||||
float GetSparseProducerWeight() const { return m_sparseProducerWeight; }
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -662,15 +662,6 @@ public:
|
||||
return m_nBestIncludesSegmentation;
|
||||
}
|
||||
|
||||
const std::vector<const FeatureFunction*>& GetSparseProducers() const {return m_sparseProducers;}
|
||||
|
||||
void AddSparseProducer(const FeatureFunction* ff) {
|
||||
m_sparseProducers.push_back(ff);
|
||||
}
|
||||
|
||||
//All sparse producers that have an activated global weight
|
||||
std::vector<const FeatureFunction*> m_sparseProducers;
|
||||
|
||||
float GetWeightWordPenalty() const;
|
||||
float GetWeightUnknownWordPenalty() const;
|
||||
|
||||
|
@ -39,7 +39,6 @@ int TargetNgramState::Compare(const FFState& other) const {
|
||||
|
||||
TargetNgramFeature::TargetNgramFeature(const std::string &line)
|
||||
:StatefulFeatureFunction("TargetNgramFeature", 0, line)
|
||||
,m_sparseProducerWeight(1)
|
||||
{
|
||||
std::cerr << "Initializing target ngram feature.." << std::endl;
|
||||
|
||||
|
@ -184,9 +184,6 @@ public:
|
||||
|
||||
bool Load(const std::string &filePath);
|
||||
|
||||
void SetSparseProducerWeight(float weight) { m_sparseProducerWeight = weight; }
|
||||
float GetSparseProducerWeight() const { return m_sparseProducerWeight; }
|
||||
|
||||
virtual const FFState* EmptyHypothesisState(const InputType &input) const;
|
||||
|
||||
virtual FFState* Evaluate(const Hypothesis& cur_hypo, const FFState* prev_state,
|
||||
@ -206,9 +203,6 @@ private:
|
||||
size_t m_n;
|
||||
bool m_lower_ngrams;
|
||||
|
||||
// additional weight that all sparse weights are scaled with
|
||||
float m_sparseProducerWeight;
|
||||
|
||||
std::string m_baseName;
|
||||
|
||||
void appendNgram(const Word& word, bool& skip, std::stringstream& ngram) const;
|
||||
|
@ -17,7 +17,6 @@ using namespace std;
|
||||
WordTranslationFeature::WordTranslationFeature(const std::string &line)
|
||||
:StatelessFeatureFunction("WordTranslationFeature", 0, line)
|
||||
,m_unrestricted(true)
|
||||
,m_sparseProducerWeight(1)
|
||||
,m_simple(true)
|
||||
,m_sourceContext(false)
|
||||
,m_targetContext(false)
|
||||
|
@ -31,7 +31,6 @@ private:
|
||||
bool m_sourceContext;
|
||||
bool m_targetContext;
|
||||
bool m_domainTrigger;
|
||||
float m_sparseProducerWeight;
|
||||
bool m_ignorePunctuation;
|
||||
CharHash m_punctuationHash;
|
||||
|
||||
@ -54,9 +53,6 @@ public:
|
||||
, ScoreComponentCollection &scoreBreakdown
|
||||
, ScoreComponentCollection &estimatedFutureScore) const;
|
||||
|
||||
void SetSparseProducerWeight(float weight) { m_sparseProducerWeight = weight; }
|
||||
float GetSparseProducerWeight() const { return m_sparseProducerWeight; }
|
||||
|
||||
StatelessFeatureType GetStatelessFeatureType() const
|
||||
{ return RequiresSegmentation; }
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user