/* Moses - factored phrase-based language decoder Copyright (C) 2010 University of Edinburgh This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #pragma once #ifndef FEATUREVECTOR_H #define FEATUREVECTOR_H #include #include #include #include #include #include #include #include #ifdef MPI_ENABLE #include #include #include #include #include #endif #ifdef WITH_THREADS #include #endif #include "util/exception.hh" #include "util/string_piece.hh" namespace Moses { typedef float FValue; /** * Feature name **/ struct FName { static const std::string SEP; typedef boost::unordered_map Name2Id; typedef boost::unordered_map Id2Count; //typedef std::map Name2Id; static Name2Id name2id; static std::vector id2name; static Id2Count id2hopeCount; static Id2Count id2fearCount; //A feature name can either be initialised as a pair of strings, //which will be concatenated with a SEP between them, or as //a single string, which will be used as-is. FName(const StringPiece &root, const StringPiece &name) { std::string assembled(root.data(), root.size()); assembled += SEP; assembled.append(name.data(), name.size()); init(assembled); } explicit FName(const StringPiece &name) { init(name); } const std::string& name() const; //const std::string& root() const {return m_root;} size_t hash() const; bool operator==(const FName& rhs) const ; bool operator!=(const FName& rhs) const ; static size_t getId(const std::string& name); static size_t getHopeIdCount(const std::string& name); static size_t getFearIdCount(const std::string& name); static void incrementHopeId(const std::string& name); static void incrementFearId(const std::string& name); static void eraseId(size_t id); private: void init(const StringPiece& name); size_t m_id; #ifdef WITH_THREADS //reader-writer lock static boost::shared_mutex m_idLock; #endif }; std::ostream& operator<<(std::ostream& out,const FName& name); struct FNameEquals { inline bool operator() (const FName& lhs, const FName& rhs) const { return (lhs == rhs); } }; struct FNameHash : std::unary_function { std::size_t operator()(const FName& x) const { return x.hash(); } }; class ProxyFVector; /** * A sparse feature (or weight) vector. **/ class FVector { public: /** Empty feature vector */ FVector(size_t coreFeatures = 0); FVector& operator=( const FVector& rhs ) { m_features = rhs.m_features; m_coreFeatures = rhs.m_coreFeatures; return *this; } /* * Change the number of core features **/ void resize(size_t newsize); typedef boost::unordered_map FNVmap; /** Iterators */ typedef FNVmap::iterator iterator; typedef FNVmap::const_iterator const_iterator; iterator begin() { return m_features.begin(); } iterator end() { return m_features.end(); } const_iterator cbegin() const { return m_features.cbegin(); } const_iterator cend() const { return m_features.cend(); } bool hasNonDefaultValue(FName name) const { return m_features.find(name) != m_features.end(); } void clear(); /** Load from file - each line should be 'root[_name] value' */ bool load(const std::string& filename); void save(const std::string& filename) const; void write(std::ostream& out, const std::string& sep=" ", const std::string& linesep="\n") const ; /** Element access */ ProxyFVector operator[](const FName& name); FValue& operator[](size_t index); FValue operator[](const FName& name) const; FValue operator[](size_t index) const; /** Size */ size_t size() const { return m_features.size() + m_coreFeatures.size(); } size_t coreSize() const { return m_coreFeatures.size(); } const std::valarray &getCoreFeatures() const { return m_coreFeatures; } /** Equality */ bool operator== (const FVector& rhs) const; bool operator!= (const FVector& rhs) const; FValue inner_product(const FVector& rhs) const; friend class ProxyFVector; /**arithmetic */ //Element-wise //If one side has fewer core features, take the missing ones to be 0. FVector& operator+= (const FVector& rhs); FVector& operator-= (const FVector& rhs); FVector& operator*= (const FVector& rhs); FVector& operator/= (const FVector& rhs); //Scalar FVector& operator*= (const FValue& rhs); FVector& operator/= (const FValue& rhs); FVector& multiplyEqualsBackoff(const FVector& rhs, float backoff); FVector& multiplyEquals(float core_r0, float sparse_r0); FVector& max_equals(const FVector& rhs); /** norms and sums */ FValue l1norm() const; FValue l1norm_coreFeatures() const; FValue l2norm() const; FValue linfnorm() const; size_t l1regularize(float lambda); void l2regularize(float lambda); size_t sparseL1regularize(float lambda); void sparseL2regularize(float lambda); FValue sum() const; /** pretty printing */ std::ostream& print(std::ostream& out) const; /** additional */ void printCoreFeatures(); //scale so that abs. value is less than maxvalue void thresholdScale(float maxValue ); void capMax(FValue maxValue); void capMin(FValue minValue); void sparsePlusEquals(const FVector& rhs); void coreAssign(const FVector& rhs); void incrementSparseHopeFeatures(); void incrementSparseFearFeatures(); void printSparseHopeFeatureCounts(std::ofstream& out); void printSparseFearFeatureCounts(std::ofstream& out); void printSparseHopeFeatureCounts(); void printSparseFearFeatureCounts(); size_t pruneSparseFeatures(size_t threshold); size_t pruneZeroWeightFeatures(); void updateConfidenceCounts(const FVector& weightUpdate, bool signedCounts); void updateLearningRates(float decay_core, float decay_sparse, const FVector& confidence_counts, float core_r0, float sparse_r0); // vector which, for each element of the original vector, reflects whether an element is zero or non-zero void setToBinaryOf(const FVector& rhs); // divide only core features by scalar FVector& coreDivideEquals(float scalar); // divide each element by the number given in the rhs vector FVector& divideEquals(const FVector& rhs); void merge(const FVector &other); #ifdef MPI_ENABLE friend class boost::serialization::access; #endif private: friend void swap(FVector &first, FVector &second); /** Internal get and set. */ const FValue& get(const FName& name) const; FValue getBackoff(const FName& name, float backoff) const; void set(const FName& name, const FValue& value); FNVmap m_features; std::valarray m_coreFeatures; #ifdef MPI_ENABLE //serialization template void save(Archive &ar, const unsigned int version) const { std::vector names; std::vector values; for (const_iterator i = cbegin(); i != cend(); ++i) { std::ostringstream ostr; ostr << i->first; names.push_back(ostr.str()); values.push_back(i->second); } ar << names; ar << values; ar << m_coreFeatures; } template void load(Archive &ar, const unsigned int version) { clear(); std::vector names; std::vector values; ar >> names; ar >> values; ar >> m_coreFeatures; UTIL_THROW_IF2(names.size() != values.size(), "Error"); for (size_t i = 0; i < names.size(); ++i) { set(FName(names[i]), values[i]); } } BOOST_SERIALIZATION_SPLIT_MEMBER() #endif }; inline void swap(FVector &first, FVector &second) { swap(first.m_features, second.m_features); swap(first.m_coreFeatures, second.m_coreFeatures); } std::ostream& operator<<( std::ostream& out, const FVector& fv); //Element-wise operations const FVector operator+(const FVector& lhs, const FVector& rhs); const FVector operator-(const FVector& lhs, const FVector& rhs); const FVector operator*(const FVector& lhs, const FVector& rhs); const FVector operator/(const FVector& lhs, const FVector& rhs); //Scalar operations const FVector operator*(const FVector& lhs, const FValue& rhs); const FVector operator/(const FVector& lhs, const FValue& rhs); const FVector fvmax(const FVector& lhs, const FVector& rhs); FValue inner_product(const FVector& lhs, const FVector& rhs); struct FVectorPlus { FVector operator()(const FVector& lhs, const FVector& rhs) const { return lhs + rhs; } }; /** * Used to help with subscript operator overloading. * See http://stackoverflow.com/questions/1386075/overloading-operator-for-a-sparse-vector **/ class ProxyFVector { public: ProxyFVector(FVector *fv, const FName& name ) : m_fv(fv), m_name(name) {} ProxyFVector &operator=(const FValue& value) { // If we get here, we know that operator[] was called to perform a write access, // so we can insert an item in the vector if needed //std::cerr << "Inserting " << value << " into " << m_name << std::endl; m_fv->set(m_name,value); return *this; } operator FValue() { // If we get here, we know that operator[] was called to perform a read access, // so we can simply return the value from the vector return m_fv->get(m_name); } /*operator FValue&() { return m_fv->m_features[m_name]; }*/ FValue operator++() { return ++m_fv->m_features[m_name]; } FValue operator +=(FValue lhs) { return (m_fv->m_features[m_name] += lhs); } FValue operator -=(FValue lhs) { return (m_fv->m_features[m_name] -= lhs); } private: FVector* m_fv; const FName& m_name; }; } #endif