// $Id$ // vim:tabstop=2 /*********************************************************************** Moses - factored phrase-based language decoder Copyright (C) 2006 University of Edinburgh This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ***********************************************************************/ #include #include #include #include #include "TranslationOption.h" #include "TranslationOptionCollection.h" #include "Hypothesis.h" #include "Util.h" #include "SquareMatrix.h" #include "StaticData.h" #include "InputType.h" #include "Manager.h" #include "moses/FF/FFState.h" #include "moses/FF/StatefulFeatureFunction.h" #include "moses/FF/StatelessFeatureFunction.h" using namespace std; namespace Moses { #ifdef USE_HYPO_POOL ObjectPool Hypothesis::s_objectPool("Hypothesis", 300000); #endif Hypothesis::Hypothesis(Manager& manager, InputType const& source, const TranslationOption &initialTransOpt) : m_prevHypo(NULL) , m_sourceCompleted(source.GetSize(), manager.m_source.m_sourceCompleted) , m_sourceInput(source) , m_currSourceWordsRange( m_sourceCompleted.GetFirstGapPos()>0 ? 0 : NOT_FOUND, m_sourceCompleted.GetFirstGapPos()>0 ? m_sourceCompleted.GetFirstGapPos()-1 : NOT_FOUND) , m_currTargetWordsRange(NOT_FOUND, NOT_FOUND) , m_wordDeleted(false) , m_totalScore(0.0f) , m_futureScore(0.0f) , m_ffStates(StatefulFeatureFunction::GetStatefulFeatureFunctions().size()) , m_arcList(NULL) , m_transOpt(initialTransOpt) , m_manager(manager) , m_id(m_manager.GetNextHypoId()) { // used for initial seeding of trans process // initialize scores //_hash_computed = false; //s_HypothesesCreated = 1; const vector& ffs = StatefulFeatureFunction::GetStatefulFeatureFunctions(); for (unsigned i = 0; i < ffs.size(); ++i) m_ffStates[i] = ffs[i]->EmptyHypothesisState(source); m_manager.GetSentenceStats().AddCreated(); } /*** * continue prevHypo by appending the phrases in transOpt */ Hypothesis::Hypothesis(const Hypothesis &prevHypo, const TranslationOption &transOpt) : m_prevHypo(&prevHypo) , m_sourceCompleted (prevHypo.m_sourceCompleted ) , m_sourceInput (prevHypo.m_sourceInput) , m_currSourceWordsRange (transOpt.GetSourceWordsRange()) , m_currTargetWordsRange ( prevHypo.m_currTargetWordsRange.GetEndPos() + 1 ,prevHypo.m_currTargetWordsRange.GetEndPos() + transOpt.GetTargetPhrase().GetSize()) , m_wordDeleted(false) , m_totalScore(0.0f) , m_futureScore(0.0f) , m_scoreBreakdown(prevHypo.GetScoreBreakdown()) , m_ffStates(prevHypo.m_ffStates.size()) , m_arcList(NULL) , m_transOpt(transOpt) , m_manager(prevHypo.GetManager()) , m_id(m_manager.GetNextHypoId()) { m_scoreBreakdown.PlusEquals(transOpt.GetScoreBreakdown()); // assert that we are not extending our hypothesis by retranslating something // that this hypothesis has already translated! assert(!m_sourceCompleted.Overlap(m_currSourceWordsRange)); //_hash_computed = false; m_sourceCompleted.SetValue(m_currSourceWordsRange.GetStartPos(), m_currSourceWordsRange.GetEndPos(), true); m_wordDeleted = transOpt.IsDeletionOption(); m_manager.GetSentenceStats().AddCreated(); } Hypothesis::~Hypothesis() { for (unsigned i = 0; i < m_ffStates.size(); ++i) delete m_ffStates[i]; if (m_arcList) { ArcList::iterator iter; for (iter = m_arcList->begin() ; iter != m_arcList->end() ; ++iter) { FREEHYPO(*iter); } m_arcList->clear(); delete m_arcList; m_arcList = NULL; } } void Hypothesis::AddArc(Hypothesis *loserHypo) { if (!m_arcList) { if (loserHypo->m_arcList) { // we don't have an arcList, but loser does this->m_arcList = loserHypo->m_arcList; // take ownership, we'll delete loserHypo->m_arcList = 0; // prevent a double deletion } else { this->m_arcList = new ArcList(); } } else { if (loserHypo->m_arcList) { // both have an arc list: merge. delete loser size_t my_size = m_arcList->size(); size_t add_size = loserHypo->m_arcList->size(); this->m_arcList->resize(my_size + add_size, 0); std::memcpy(&(*m_arcList)[0] + my_size, &(*loserHypo->m_arcList)[0], add_size * sizeof(Hypothesis *)); delete loserHypo->m_arcList; loserHypo->m_arcList = 0; } else { // loserHypo doesn't have any arcs // DO NOTHING } } m_arcList->push_back(loserHypo); } /*** * return the subclass of Hypothesis most appropriate to the given translation option */ Hypothesis* Hypothesis::CreateNext(const TranslationOption &transOpt) const { return Create(*this, transOpt); } /*** * return the subclass of Hypothesis most appropriate to the given translation option */ Hypothesis* Hypothesis::Create(const Hypothesis &prevHypo, const TranslationOption &transOpt) { #ifdef USE_HYPO_POOL Hypothesis *ptr = s_objectPool.getPtr(); return new(ptr) Hypothesis(prevHypo, transOpt); #else return new Hypothesis(prevHypo, transOpt); #endif } /*** * return the subclass of Hypothesis most appropriate to the given target phrase */ Hypothesis* Hypothesis::Create(Manager& manager, InputType const& m_source, const TranslationOption &initialTransOpt) { #ifdef USE_HYPO_POOL Hypothesis *ptr = s_objectPool.getPtr(); return new(ptr) Hypothesis(manager, m_source, initialTransOpt); #else return new Hypothesis(manager, m_source, initialTransOpt); #endif } /** check, if two hypothesis can be recombined. this is actually a sorting function that allows us to keep an ordered list of hypotheses. This makes recombination much quicker. */ int Hypothesis::RecombineCompare(const Hypothesis &compare) const { // -1 = this < compare // +1 = this > compare // 0 = this ==compare int comp = m_sourceCompleted.Compare(compare.m_sourceCompleted); if (comp != 0) return comp; for (unsigned i = 0; i < m_ffStates.size(); ++i) { if (m_ffStates[i] == NULL || compare.m_ffStates[i] == NULL) { comp = m_ffStates[i] - compare.m_ffStates[i]; } else { comp = m_ffStates[i]->Compare(*compare.m_ffStates[i]); } if (comp != 0) return comp; } return 0; } void Hypothesis::EvaluateWith(const StatefulFeatureFunction &sfff, int state_idx) { const StaticData &staticData = StaticData::Instance(); if (! staticData.IsFeatureFunctionIgnored( sfff )) { m_ffStates[state_idx] = sfff.Evaluate( *this, m_prevHypo ? m_prevHypo->m_ffStates[state_idx] : NULL, &m_scoreBreakdown); } } void Hypothesis::EvaluateWith(const StatelessFeatureFunction& slff) { const StaticData &staticData = StaticData::Instance(); if (! staticData.IsFeatureFunctionIgnored( slff )) { slff.Evaluate(*this, &m_scoreBreakdown); } } /*** * calculate the logarithm of our total translation score (sum up components) */ void Hypothesis::Evaluate(const SquareMatrix &futureScore) { IFVERBOSE(2) { m_manager.GetSentenceStats().StartTimeOtherScore(); } // some stateless score producers cache their values in the translation // option: add these here // language model scores for n-grams completely contained within a target // phrase are also included here // compute values of stateless feature functions that were not // cached in the translation option const vector& sfs = StatelessFeatureFunction::GetStatelessFeatureFunctions(); for (unsigned i = 0; i < sfs.size(); ++i) { const StatelessFeatureFunction &ff = *sfs[i]; EvaluateWith(ff); } const vector& ffs = StatefulFeatureFunction::GetStatefulFeatureFunctions(); for (unsigned i = 0; i < ffs.size(); ++i) { const StatefulFeatureFunction &ff = *ffs[i]; const StaticData &staticData = StaticData::Instance(); if (! staticData.IsFeatureFunctionIgnored(ff)) { m_ffStates[i] = ff.Evaluate(*this, m_prevHypo ? m_prevHypo->m_ffStates[i] : NULL, &m_scoreBreakdown); } } IFVERBOSE(2) { m_manager.GetSentenceStats().StopTimeOtherScore(); m_manager.GetSentenceStats().StartTimeEstimateScore(); } // FUTURE COST m_futureScore = futureScore.CalcFutureScore( m_sourceCompleted ); // TOTAL m_totalScore = m_scoreBreakdown.GetWeightedScore() + m_futureScore; IFVERBOSE(2) { m_manager.GetSentenceStats().StopTimeEstimateScore(); } } const Hypothesis* Hypothesis::GetPrevHypo()const { return m_prevHypo; } /** * print hypothesis information for pharaoh-style logging */ void Hypothesis::PrintHypothesis() const { if (!m_prevHypo) { TRACE_ERR(endl << "NULL hypo" << endl); return; } TRACE_ERR(endl << "creating hypothesis "<< m_id <<" from "<< m_prevHypo->m_id<<" ( "); int end = (int)(m_prevHypo->GetCurrTargetPhrase().GetSize()-1); int start = end-1; if ( start < 0 ) start = 0; if ( m_prevHypo->m_currTargetWordsRange.GetStartPos() == NOT_FOUND ) { TRACE_ERR( " "); } else { TRACE_ERR( "... "); } if (end>=0) { WordsRange range(start, end); TRACE_ERR( m_prevHypo->GetCurrTargetPhrase().GetSubString(range) << " "); } TRACE_ERR( ")"<m_totalScore - m_prevHypo->m_futureScore) < translation cost "<GetCurrSourceWordsRange())); // << " => distortion cost "<<(m_score[ScoreType::Distortion]*weightDistortion)<size() > nBestSize * 5) { // prune arc list only if there too many arcs NTH_ELEMENT4(m_arcList->begin() , m_arcList->begin() + nBestSize - 1 , m_arcList->end() , CompareHypothesisTotalScore()); // delete bad ones ArcList::iterator iter; for (iter = m_arcList->begin() + nBestSize ; iter != m_arcList->end() ; ++iter) { Hypothesis *arc = *iter; FREEHYPO(arc); } m_arcList->erase(m_arcList->begin() + nBestSize , m_arcList->end()); } // set all arc's main hypo variable to this hypo ArcList::iterator iter = m_arcList->begin(); for (; iter != m_arcList->end() ; ++iter) { Hypothesis *arc = *iter; arc->SetWinningHypo(this); } } const TargetPhrase &Hypothesis::GetCurrTargetPhrase() const { return m_transOpt.GetTargetPhrase(); } void Hypothesis::GetOutputPhrase(Phrase &out) const { if (m_prevHypo != NULL) { m_prevHypo->GetOutputPhrase(out); } out.Append(GetCurrTargetPhrase()); } TO_STRING_BODY(Hypothesis) // friend ostream& operator<<(ostream& out, const Hypothesis& hypo) { hypo.ToStream(out); // words bitmap out << "[" << hypo.m_sourceCompleted << "] "; // scores out << " [total=" << hypo.GetTotalScore() << "]"; out << " " << hypo.GetScoreBreakdown(); // alignment out << " " << hypo.GetCurrTargetPhrase().GetAlignNonTerm(); /* const Hypothesis *prevHypo = hypo.GetPrevHypo(); if (prevHypo) out << endl << *prevHypo; */ return out; } std::string Hypothesis::GetSourcePhraseStringRep(const vector factorsToPrint) const { return m_transOpt.GetInputPath().GetPhrase().GetStringRep(factorsToPrint); } std::string Hypothesis::GetTargetPhraseStringRep(const vector factorsToPrint) const { if (!m_prevHypo) { return ""; } return GetCurrTargetPhrase().GetStringRep(factorsToPrint); } std::string Hypothesis::GetSourcePhraseStringRep() const { vector allFactors; for(size_t i=0; i < MAX_NUM_FACTORS; i++) { allFactors.push_back(i); } return GetSourcePhraseStringRep(allFactors); } std::string Hypothesis::GetTargetPhraseStringRep() const { vector allFactors; for(size_t i=0; i < MAX_NUM_FACTORS; i++) { allFactors.push_back(i); } return GetTargetPhraseStringRep(allFactors); } }