/* * Data.cpp * met - Minimum Error Training * * Created by Nicola Bertoldi on 13/05/08. * */ #include #include #include "Data.h" #include "FileStream.h" #include "Scorer.h" #include "ScorerFactory.h" #include "Util.h" Data::Data(Scorer& ptr): theScorer(&ptr), _sparse_flag(false) { score_type = (*theScorer).getName(); TRACE_ERR("Data::score_type " << score_type << std::endl); TRACE_ERR("Data::Scorer type from Scorer: " << theScorer->getName() << endl); featdata = new FeatureData; scoredata = new ScoreData(*theScorer); } Data::~Data() { if (featdata) { delete featdata; featdata = NULL; } if (scoredata) { delete scoredata; scoredata = NULL; } } void Data::loadnbest(const std::string &file) { TRACE_ERR("loading nbest from " << file << std::endl); FeatureStats featentry; ScoreStats scoreentry; std::string sentence_index; inputfilestream inp(file); // matches a stream with a file. Opens the file if (!inp.good()) throw runtime_error("Unable to open: " + file); std::string substring, subsubstring, stringBuf; std::string theSentence; std::string::size_type loc; while (getline(inp,stringBuf,'\n')) { if (stringBuf.empty()) continue; // TRACE_ERR("stringBuf: " << stringBuf << std::endl); getNextPound(stringBuf, substring, "|||"); //first field sentence_index = substring; getNextPound(stringBuf, substring, "|||"); //second field theSentence = substring; // adding statistics for error measures featentry.reset(); scoreentry.clear(); theScorer->prepareStats(sentence_index, theSentence, scoreentry); scoredata->add(scoreentry, sentence_index); getNextPound(stringBuf, substring, "|||"); //third field // examine first line for name of features if (!existsFeatureNames()) { std::string stringsupport=substring; std::string features=""; std::string tmpname=""; size_t tmpidx=0; while (!stringsupport.empty()) { // TRACE_ERR("Decompounding: " << substring << std::endl); getNextPound(stringsupport, subsubstring); // string ending with ":" are skipped, because they are the names of the features if ((loc = subsubstring.find_last_of(":")) != subsubstring.length()-1) { features+=tmpname+"_"+stringify(tmpidx)+" "; tmpidx++; } // ignore sparse feature name else if (subsubstring.find("_") != string::npos) { // also ignore its value getNextPound(stringsupport, subsubstring); } // update current feature name else { tmpidx=0; tmpname=subsubstring.substr(0,subsubstring.size() - 1); } } featdata->setFeatureMap(features); } // adding features while (!substring.empty()) { // TRACE_ERR("Decompounding: " << substring << std::endl); getNextPound(substring, subsubstring); // no ':' -> feature value that needs to be stored if ((loc = subsubstring.find_last_of(":")) != subsubstring.length()-1) { featentry.add(ConvertStringToFeatureStatsType(subsubstring)); } // sparse feature name? store as well else if (subsubstring.find("_") != string::npos) { std::string name = subsubstring; getNextPound(substring, subsubstring); featentry.addSparse( name, atof(subsubstring.c_str()) ); _sparse_flag = true; } } //cerr << "number of sparse features: " << featentry.getSparse().size() << endl; featdata->add(featentry,sentence_index); } inp.close(); } // TODO void Data::mergeSparseFeatures() { std::cerr << "ERROR: sparse features can only be trained with pairwise ranked optimizer (PRO), not traditional MERT\n"; exit(1); } // really not the right place... float sentenceLevelBleuPlusOne( ScoreStats &stats ) { float logbleu = 0.0; const unsigned int bleu_order = 4; for (unsigned int j=0; j " << exp(logbleu) << endl; return exp(logbleu); } class SampledPair { private: unsigned int translation1; unsigned int translation2; float scoreDiff; public: SampledPair( unsigned int t1, unsigned int t2, float diff ) { if (diff > 0) { translation1 = t1; translation2 = t2; scoreDiff = diff; } else { translation1 = t2; translation2 = t1; scoreDiff = -diff; } } float getDiff() { return scoreDiff; } unsigned int getTranslation1() { return translation1; } unsigned int getTranslation2() { return translation2; } }; void Data::sampleRankedPairs( const std::string &rankedpairfile ) { cout << "Sampling ranked pairs." << endl; ofstream *outFile = new ofstream(); outFile->open( rankedpairfile.c_str() ); ostream *out = outFile; const unsigned int n_samplings = 5000; const unsigned int n_samples = 50; const float min_diff = 0.05; // loop over all sentences for(unsigned int S=0; Ssize(); S++) { unsigned int n_translations = featdata->get(S).size(); // sample a fixed number of times vector< SampledPair* > samples; vector< float > scores; for(unsigned int i=0; iget(S,translation1)); unsigned int translation2 = rand() % n_translations; float bleu2 = sentenceLevelBleuPlusOne(scoredata->get(S,translation2)); if (abs(bleu1-bleu2) < min_diff) continue; samples.push_back( new SampledPair( translation1, translation2, bleu1-bleu2) ); scores.push_back( 1.0 - abs(bleu1-bleu2) ); } //cerr << "sampled " << samples.size() << " pairs\n"; float min_diff = -1.0; if (samples.size() > n_samples) { nth_element(scores.begin(), scores.begin()+(n_samples-1), scores.end()); min_diff = 0.99999-scores[n_samples-1]; //cerr << "min_diff = " << min_diff << endl; } unsigned int collected = 0; for(unsigned int i=0; igetDiff() >= min_diff) { collected++; *out << "1"; outputSample(*out, featdata->get(S,samples[i]->getTranslation1()), featdata->get(S,samples[i]->getTranslation2())); *out << endl; *out << "0"; outputSample(*out, featdata->get(S,samples[i]->getTranslation2()), featdata->get(S,samples[i]->getTranslation1())); *out << endl; } delete samples[i]; } //cerr << "collected " << collected << endl; } out->flush(); outFile->close(); } void Data::outputSample( ostream &out, const FeatureStats &f1, const FeatureStats &f2 ) { // difference in score in regular features for(unsigned int j=0; j 0.00001) out << " F" << j << " " << (f1.get(j)-f2.get(j)); if (!hasSparseFeatures()) return; out << " "; // sparse features const SparseVector &s1 = f1.getSparse(); const SparseVector &s2 = f2.getSparse(); SparseVector diff = s1 - s2; diff.write(out); } void Data::createShards(size_t shard_count, float shard_size, const string& scorerconfig, std::vector& shards) { assert(shard_count); assert(shard_size >=0); assert(shard_size <= 1); size_t data_size = scoredata->size(); assert(data_size == featdata->size()); shard_size *= data_size; for (size_t shard_id = 0; shard_id < shard_count; ++shard_id) { vector shard_contents; if (shard_size == 0) { //split into roughly equal size shards size_t shard_start = floor(0.5 + shard_id * (float)data_size / shard_count); size_t shard_end = floor(0.5 + (shard_id+1) * (float)data_size / shard_count); for (size_t i = shard_start; i < shard_end; ++i) { shard_contents.push_back(i); } } else { //create shards by randomly sampling for (size_t i = 0; i < floor(shard_size+0.5); ++i) { shard_contents.push_back(rand() % data_size); } } Scorer* scorer = ScorerFactory::getScorer(score_type, scorerconfig); shards.push_back(Data(*scorer)); shards.back().score_type = score_type; shards.back().number_of_scores = number_of_scores; shards.back()._sparse_flag = _sparse_flag; for (size_t i = 0; i < shard_contents.size(); ++i) { shards.back().featdata->add(featdata->get(shard_contents[i])); shards.back().scoredata->add(scoredata->get(shard_contents[i])); } //cerr << endl; } }