/* * FeatureArray.cpp * mert - Minimum Error Rate Training * * Created by Nicola Bertoldi on 13/05/08. * */ #include #include #include "FeatureArray.h" #include "FileStream.h" #include "Util.h" using namespace std; namespace MosesTuning { FeatureArray::FeatureArray() : m_index(0), m_num_features(0){} FeatureArray::~FeatureArray() {} void FeatureArray::savetxt(ostream* os) { *os << FEATURES_TXT_BEGIN << " " << m_index << " " << m_array.size() << " " << m_num_features << " " << m_features << endl; for (featarray_t::iterator i = m_array.begin(); i != m_array.end(); ++i) { i->savetxt(os); *os << endl; } *os << FEATURES_TXT_END << endl; } void FeatureArray::savebin(ostream* os) { *os << FEATURES_BIN_BEGIN << " " << m_index << " " << m_array.size() << " " << m_num_features << " " << m_features << endl; for (featarray_t::iterator i = m_array.begin(); i != m_array.end(); ++i) i->savebin(os); *os << FEATURES_BIN_END << endl; } void FeatureArray::save(ostream* os, bool bin) { if (size() <= 0) return; if (bin) { savebin(os); } else { savetxt(os); } } void FeatureArray::save(const string &file, bool bin) { ofstream ofs(file.c_str(), ios::out); if (!ofs) { cerr << "Failed to open " << file << endl; exit(1); } ostream *os = &ofs; save(os, bin); ofs.close(); } void FeatureArray::save(bool bin) { save(&cout, bin); } void FeatureArray::loadbin(istream* is, size_t n) { FeatureStats entry(m_num_features); for (size_t i = 0 ; i < n; i++) { entry.loadbin(is); add(entry); } } void FeatureArray::loadtxt(istream* is, const SparseVector& sparseWeights, size_t n) { FeatureStats entry(m_num_features); for (size_t i=0 ; i < n; i++) { entry.loadtxt(is, sparseWeights); add(entry); } } void FeatureArray::load(istream* is, const SparseVector& sparseWeights) { size_t number_of_entries = 0; bool binmode = false; string substring, stringBuf; string::size_type loc; getline(*is, stringBuf); if (!is->good()) { return; } if (!stringBuf.empty()) { if ((loc = stringBuf.find(FEATURES_TXT_BEGIN)) == 0) { binmode = false; } else if ((loc = stringBuf.find(FEATURES_BIN_BEGIN)) == 0) { binmode = true; } else { TRACE_ERR("ERROR: FeatureArray::load(): Wrong header"); return; } getNextPound(stringBuf, substring); getNextPound(stringBuf, substring); m_index = atoi(substring.c_str()); getNextPound(stringBuf, substring); number_of_entries = atoi(substring.c_str()); getNextPound(stringBuf, substring); m_num_features = atoi(substring.c_str()); m_features = stringBuf; } if (binmode) { loadbin(is, number_of_entries); } else { loadtxt(is, sparseWeights, number_of_entries); } getline(*is, stringBuf); if (!stringBuf.empty()) { if ((loc = stringBuf.find(FEATURES_TXT_END)) != 0 && (loc = stringBuf.find(FEATURES_BIN_END)) != 0) { TRACE_ERR("ERROR: FeatureArray::load(): Wrong footer"); return; } } } void FeatureArray::merge(FeatureArray& e) { //dummy implementation for (size_t i = 0; i < e.size(); i++) add(e.get(i)); } bool FeatureArray::check_consistency() const { const size_t sz = NumberOfFeatures(); if (sz == 0) return true; for (featarray_t::const_iterator i = m_array.begin(); i != m_array.end(); i++) { if (i->size() != sz) return false; } return true; } }