// $Id$ // vim:tabstop=2 /*********************************************************************** Moses - factored phrase-based language decoder Copyright (C) 2006 University of Edinburgh This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ***********************************************************************/ #ifdef WIN32 #include #else #include #endif #include #include #include #include #include #include "Manager.h" #include "TypeDef.h" #include "Util.h" #include "TargetPhrase.h" #include "TrellisPath.h" #include "TrellisPathCollection.h" #include "TranslationOption.h" #include "TranslationOptionCollection.h" #include "Timer.h" #include "moses/FF/DistortionScoreProducer.h" #include "moses/LM/Base.h" #include "moses/TranslationModel/PhraseDictionary.h" #ifdef HAVE_PROTOBUF #include "hypergraph.pb.h" #include "rule.pb.h" #endif #include "util/exception.hh" using namespace std; namespace Moses { Manager::Manager(size_t lineNumber, InputType const& source, SearchAlgorithm searchAlgorithm) :m_transOptColl(source.CreateTranslationOptionCollection()) ,m_search(Search::CreateSearch(*this, source, searchAlgorithm, *m_transOptColl)) ,interrupted_flag(0) ,m_hypoId(0) ,m_lineNumber(lineNumber) ,m_source(source) { StaticData::Instance().InitializeForInput(m_source); } Manager::~Manager() { delete m_transOptColl; delete m_search; // this is a comment ... StaticData::Instance().CleanUpAfterSentenceProcessing(m_source); } /** * Main decoder loop that translates a sentence by expanding * hypotheses stack by stack, until the end of the sentence. */ void Manager::ProcessSentence() { // initialize statistics ResetSentenceStats(m_source); IFVERBOSE(2) { GetSentenceStats().StartTimeTotal(); } // check if alternate weight setting is used // this is not thread safe! it changes StaticData if (StaticData::Instance().GetHasAlternateWeightSettings()) { if (m_source.GetSpecifiesWeightSetting()) { StaticData::Instance().SetWeightSetting(m_source.GetWeightSetting()); } else { StaticData::Instance().SetWeightSetting("default"); } } // get translation options IFVERBOSE(1) { GetSentenceStats().StartTimeCollectOpts(); } m_transOptColl->CreateTranslationOptions(); // some reporting on how long this took IFVERBOSE(1) { GetSentenceStats().StopTimeCollectOpts(); TRACE_ERR("Line "<< m_lineNumber << ": Collecting options took " << GetSentenceStats().GetTimeCollectOpts() << " seconds" << endl); } // search for best translation with the specified algorithm Timer searchTime; searchTime.start(); m_search->ProcessSentence(); VERBOSE(1, "Line " << m_lineNumber << ": Search took " << searchTime << " seconds" << endl); IFVERBOSE(2) { GetSentenceStats().StopTimeTotal(); TRACE_ERR(GetSentenceStats()); } } /** * Print all derivations in search graph. Note: The number of derivations is exponential in the sentence length * */ void Manager::PrintAllDerivations(long translationId, ostream& outputStream) const { const std::vector < HypothesisStack* > &hypoStackColl = m_search->GetHypothesisStacks(); vector sortedPureHypo = hypoStackColl.back()->GetSortedList(); if (sortedPureHypo.size() == 0) return; float remainingScore = 0; vector remainingPhrases; // add all pure paths vector::const_iterator iterBestHypo; for (iterBestHypo = sortedPureHypo.begin() ; iterBestHypo != sortedPureHypo.end() ; ++iterBestHypo) { printThisHypothesis(translationId, *iterBestHypo, remainingPhrases, remainingScore, outputStream); printDivergentHypothesis(translationId, *iterBestHypo, remainingPhrases, remainingScore, outputStream); } } const TranslationOptionCollection* Manager::getSntTranslationOptions() { return m_transOptColl; } void Manager::printDivergentHypothesis(long translationId, const Hypothesis* hypo, const vector & remainingPhrases, float remainingScore , ostream& outputStream ) const { //Backtrack from the predecessor if (hypo->GetId() > 0) { vector followingPhrases; followingPhrases.push_back(& (hypo->GetCurrTargetPhrase())); ///((Phrase) hypo->GetPrevHypo()->GetTargetPhrase()); followingPhrases.insert(followingPhrases.end()--, remainingPhrases.begin(), remainingPhrases.end()); printDivergentHypothesis(translationId, hypo->GetPrevHypo(), followingPhrases , remainingScore + hypo->GetScore() - hypo->GetPrevHypo()->GetScore(), outputStream); } //Process the arcs const ArcList *pAL = hypo->GetArcList(); if (pAL) { const ArcList &arcList = *pAL; // every possible Arc to replace this edge ArcList::const_iterator iterArc; for (iterArc = arcList.begin() ; iterArc != arcList.end() ; ++iterArc) { const Hypothesis *loserHypo = *iterArc; const Hypothesis* loserPrevHypo = loserHypo->GetPrevHypo(); float arcScore = loserHypo->GetScore() - loserPrevHypo->GetScore(); vector followingPhrases; followingPhrases.push_back(&(loserHypo->GetCurrTargetPhrase())); followingPhrases.insert(followingPhrases.end()--, remainingPhrases.begin(), remainingPhrases.end()); printThisHypothesis(translationId, loserPrevHypo, followingPhrases, remainingScore + arcScore, outputStream); printDivergentHypothesis(translationId, loserPrevHypo, followingPhrases, remainingScore + arcScore, outputStream); } } } void Manager::printThisHypothesis(long translationId, const Hypothesis* hypo, const vector & remainingPhrases, float remainingScore, ostream& outputStream) const { outputStream << translationId << " ||| "; //Yield of this hypothesis hypo->ToStream(outputStream); for (size_t p = 0; p < remainingPhrases.size(); ++p) { const TargetPhrase * phrase = remainingPhrases[p]; size_t size = phrase->GetSize(); for (size_t pos = 0 ; pos < size ; pos++) { const Factor *factor = phrase->GetFactor(pos, 0); outputStream << *factor; outputStream << " "; } } outputStream << "||| " << hypo->GetScore() + remainingScore; outputStream << endl; } /** * After decoding, the hypotheses in the stacks and additional arcs * form a search graph that can be mined for n-best lists. * The heavy lifting is done in the TrellisPath and TrellisPathCollection * this function controls this for one sentence. * * \param count the number of n-best translations to produce * \param ret holds the n-best list that was calculated */ void Manager::CalcNBest(size_t count, TrellisPathList &ret,bool onlyDistinct) const { if (count <= 0) return; const std::vector < HypothesisStack* > &hypoStackColl = m_search->GetHypothesisStacks(); vector sortedPureHypo = hypoStackColl.back()->GetSortedList(); if (sortedPureHypo.size() == 0) return; TrellisPathCollection contenders; set distinctHyps; // add all pure paths vector::const_iterator iterBestHypo; for (iterBestHypo = sortedPureHypo.begin() ; iterBestHypo != sortedPureHypo.end() ; ++iterBestHypo) { contenders.Add(new TrellisPath(*iterBestHypo)); } // factor defines stopping point for distinct n-best list if too many candidates identical size_t nBestFactor = StaticData::Instance().GetNBestFactor(); if (nBestFactor < 1) nBestFactor = 1000; // 0 = unlimited // MAIN loop for (size_t iteration = 0 ; (onlyDistinct ? distinctHyps.size() : ret.GetSize()) < count && contenders.GetSize() > 0 && (iteration < count * nBestFactor) ; iteration++) { // get next best from list of contenders TrellisPath *path = contenders.pop(); UTIL_THROW_IF2(path == NULL, "path is NULL"); // create deviations from current best path->CreateDeviantPaths(contenders); if(onlyDistinct) { Phrase tgtPhrase = path->GetSurfacePhrase(); if (distinctHyps.insert(tgtPhrase).second) { ret.Add(path); } else { delete path; path = NULL; } } else { ret.Add(path); } if(onlyDistinct) { const size_t nBestFactor = StaticData::Instance().GetNBestFactor(); if (nBestFactor > 0) contenders.Prune(count * nBestFactor); } else { contenders.Prune(count); } } } struct SGNReverseCompare { bool operator() (const SearchGraphNode& s1, const SearchGraphNode& s2) const { return s1.hypo->GetId() > s2.hypo->GetId(); } }; /** * Implements lattice sampling, as in Chatterjee & Cancedda, emnlp 2010 **/ void Manager::CalcLatticeSamples(size_t count, TrellisPathList &ret) const { vector searchGraph; GetSearchGraph(searchGraph); //Calculation of the sigmas of each hypothesis and edge. In C&C notation this is //the "log of the cumulative unnormalized probability of all the paths in the // lattice for the hypothesis to a final node" typedef pair Edge; map sigmas; map edgeScores; map > outgoingHyps; map idToHyp; map fscores; //Iterating through the hypos in reverse order of id gives a reverse //topological order. We rely on the fact that hypo ids are given out //sequentially, as the search proceeds. //NB: Could just sort by stack. sort(searchGraph.begin(), searchGraph.end(), SGNReverseCompare()); //first task is to fill in the outgoing hypos and edge scores. for (vector::const_iterator i = searchGraph.begin(); i != searchGraph.end(); ++i) { const Hypothesis* hypo = i->hypo; idToHyp[hypo->GetId()] = hypo; fscores[hypo->GetId()] = i->fscore; if (hypo->GetId()) { //back to current const Hypothesis* prevHypo = i->hypo->GetPrevHypo(); outgoingHyps[prevHypo].insert(hypo); edgeScores[Edge(prevHypo->GetId(),hypo->GetId())] = hypo->GetScore() - prevHypo->GetScore(); } //forward from current if (i->forward >= 0) { map::const_iterator idToHypIter = idToHyp.find(i->forward); UTIL_THROW_IF2(idToHypIter == idToHyp.end(), "Couldn't find hypothesis " << i->forward); const Hypothesis* nextHypo = idToHypIter->second; outgoingHyps[hypo].insert(nextHypo); map::const_iterator fscoreIter = fscores.find(nextHypo->GetId()); UTIL_THROW_IF2(fscoreIter == fscores.end(), "Couldn't find scores for hypothsis " << nextHypo->GetId()); edgeScores[Edge(hypo->GetId(),nextHypo->GetId())] = i->fscore - fscoreIter->second; } } //then run through again to calculate sigmas for (vector::const_iterator i = searchGraph.begin(); i != searchGraph.end(); ++i) { if (i->forward == -1) { sigmas[i->hypo] = 0; } else { map >::const_iterator outIter = outgoingHyps.find(i->hypo); UTIL_THROW_IF2(outIter == outgoingHyps.end(), "Couldn't find hypothesis " << i->hypo->GetId()); float sigma = 0; for (set::const_iterator j = outIter->second.begin(); j != outIter->second.end(); ++j) { map::const_iterator succIter = sigmas.find(*j); UTIL_THROW_IF2(succIter == sigmas.end(), "Couldn't find hypothesis " << (*j)->GetId()); map::const_iterator edgeScoreIter = edgeScores.find(Edge(i->hypo->GetId(),(*j)->GetId())); UTIL_THROW_IF2(edgeScoreIter == edgeScores.end(), "Couldn't find edge for hypothesis " << (*j)->GetId()); float term = edgeScoreIter->second + succIter->second; // Add sigma(*j) if (sigma == 0) { sigma = term; } else { sigma = log_sum(sigma,term); } } sigmas[i->hypo] = sigma; } } //The actual sampling! const Hypothesis* startHypo = searchGraph.back().hypo; UTIL_THROW_IF2(startHypo->GetId() != 0, "Expecting the start hypothesis "); for (size_t i = 0; i < count; ++i) { vector path; path.push_back(startHypo); while(1) { map >::const_iterator outIter = outgoingHyps.find(path.back()); if (outIter == outgoingHyps.end() || !outIter->second.size()) { //end of the path break; } //score the possibles vector candidates; vector candidateScores; float scoreTotal = 0; for (set::const_iterator j = outIter->second.begin(); j != outIter->second.end(); ++j) { candidates.push_back(*j); UTIL_THROW_IF2(sigmas.find(*j) == sigmas.end(), "Hypothesis " << (*j)->GetId() << " not found"); Edge edge(path.back()->GetId(),(*j)->GetId()); UTIL_THROW_IF2(edgeScores.find(edge) == edgeScores.end(), "Edge not found"); candidateScores.push_back(sigmas[*j] + edgeScores[edge]); if (scoreTotal == 0) { scoreTotal = candidateScores.back(); } else { scoreTotal = log_sum(candidateScores.back(), scoreTotal); } } //normalise transform(candidateScores.begin(), candidateScores.end(), candidateScores.begin(), bind2nd(minus(),scoreTotal)); //copy(candidateScores.begin(),candidateScores.end(),ostream_iterator(cerr," ")); //cerr << endl; //draw the sample float frandom = log((float)rand()/RAND_MAX); size_t position = 1; float sum = candidateScores[0]; for (; position < candidateScores.size() && sum < frandom; ++position) { sum = log_sum(sum,candidateScores[position]); } //cerr << "Random: " << frandom << " Chose " << position-1 << endl; const Hypothesis* chosen = candidates[position-1]; path.push_back(chosen); } //cerr << "Path: " << endl; //for (size_t j = 0; j < path.size(); ++j) { // cerr << path[j]->GetId() << " " << path[j]->GetScoreBreakdown() << endl; //} //cerr << endl; //Convert the hypos to TrellisPath ret.Add(new TrellisPath(path)); //cerr << ret.at(ret.GetSize()-1).GetScoreBreakdown() << endl; } } void Manager::CalcDecoderStatistics() const { const Hypothesis *hypo = GetBestHypothesis(); if (hypo != NULL) { GetSentenceStats().CalcFinalStats(*hypo); IFVERBOSE(2) { if (hypo != NULL) { string buff; string buff2; TRACE_ERR( "Source and Target Units:" << hypo->GetInput()); buff2.insert(0,"] "); buff2.insert(0,(hypo->GetCurrTargetPhrase()).ToString()); buff2.insert(0,":"); buff2.insert(0,(hypo->GetCurrSourceWordsRange()).ToString()); buff2.insert(0,"["); hypo = hypo->GetPrevHypo(); while (hypo != NULL) { //dont print out the empty final hypo buff.insert(0,buff2); buff2.clear(); buff2.insert(0,"] "); buff2.insert(0,(hypo->GetCurrTargetPhrase()).ToString()); buff2.insert(0,":"); buff2.insert(0,(hypo->GetCurrSourceWordsRange()).ToString()); buff2.insert(0,"["); hypo = hypo->GetPrevHypo(); } TRACE_ERR( buff << endl); } } } } void OutputWordGraph(std::ostream &outputWordGraphStream, const Hypothesis *hypo, size_t &linkId) { const Hypothesis *prevHypo = hypo->GetPrevHypo(); outputWordGraphStream << "J=" << linkId++ << "\tS=" << prevHypo->GetId() << "\tE=" << hypo->GetId() << "\ta="; // phrase table scores const std::vector &phraseTables = PhraseDictionary::GetColl(); std::vector::const_iterator iterPhraseTable; for (iterPhraseTable = phraseTables.begin() ; iterPhraseTable != phraseTables.end() ; ++iterPhraseTable) { const PhraseDictionary *phraseTable = *iterPhraseTable; vector scores = hypo->GetScoreBreakdown().GetScoresForProducer(phraseTable); outputWordGraphStream << scores[0]; vector::const_iterator iterScore; for (iterScore = ++scores.begin() ; iterScore != scores.end() ; ++iterScore) { outputWordGraphStream << ", " << *iterScore; } } // language model scores outputWordGraphStream << "\tl="; const std::vector &statefulFFs = StatefulFeatureFunction::GetStatefulFeatureFunctions(); for (size_t i = 0; i < statefulFFs.size(); ++i) { const StatefulFeatureFunction *ff = statefulFFs[i]; const LanguageModel *lm = dynamic_cast(ff); vector scores = hypo->GetScoreBreakdown().GetScoresForProducer(lm); outputWordGraphStream << scores[0]; vector::const_iterator iterScore; for (iterScore = ++scores.begin() ; iterScore != scores.end() ; ++iterScore) { outputWordGraphStream << ", " << *iterScore; } } // re-ordering outputWordGraphStream << "\tr="; const std::vector &ffs = FeatureFunction::GetFeatureFunctions(); std::vector::const_iterator iter; for (iter = ffs.begin(); iter != ffs.end(); ++iter) { const FeatureFunction *ff = *iter; const DistortionScoreProducer *model = dynamic_cast(ff); if (model) { outputWordGraphStream << hypo->GetScoreBreakdown().GetScoreForProducer(model); } } // lexicalised re-ordering /* const std::vector &lexOrderings = StaticData::Instance().GetReorderModels(); std::vector::const_iterator iterLexOrdering; for (iterLexOrdering = lexOrderings.begin() ; iterLexOrdering != lexOrderings.end() ; ++iterLexOrdering) { LexicalReordering *lexicalReordering = *iterLexOrdering; vector scores = hypo->GetScoreBreakdown().GetScoresForProducer(lexicalReordering); outputWordGraphStream << scores[0]; vector::const_iterator iterScore; for (iterScore = ++scores.begin() ; iterScore != scores.end() ; ++iterScore) { outputWordGraphStream << ", " << *iterScore; } } */ // words !! // outputWordGraphStream << "\tw=" << hypo->GetCurrTargetPhrase(); // output both source and target phrases in the word graph outputWordGraphStream << "\tw=" << hypo->GetSourcePhraseStringRep() << "|" << hypo->GetCurrTargetPhrase(); outputWordGraphStream << endl; } void Manager::GetOutputLanguageModelOrder( std::ostream &out, const Hypothesis *hypo ) { Phrase translation; hypo->GetOutputPhrase(translation); const std::vector &statefulFFs = StatefulFeatureFunction::GetStatefulFeatureFunctions(); for (size_t i = 0; i < statefulFFs.size(); ++i) { const StatefulFeatureFunction *ff = statefulFFs[i]; if (const LanguageModel *lm = dynamic_cast(ff)) { lm->ReportHistoryOrder(out, translation); } } } void Manager::GetWordGraph(long translationId, std::ostream &outputWordGraphStream) const { const StaticData &staticData = StaticData::Instance(); string fileName = staticData.GetParam("output-word-graph")[0]; bool outputNBest = Scan(staticData.GetParam("output-word-graph")[1]); const std::vector < HypothesisStack* > &hypoStackColl = m_search->GetHypothesisStacks(); outputWordGraphStream << "VERSION=1.0" << endl << "UTTERANCE=" << translationId << endl; size_t linkId = 0; std::vector < HypothesisStack* >::const_iterator iterStack; for (iterStack = ++hypoStackColl.begin() ; iterStack != hypoStackColl.end() ; ++iterStack) { const HypothesisStack &stack = **iterStack; HypothesisStack::const_iterator iterHypo; for (iterHypo = stack.begin() ; iterHypo != stack.end() ; ++iterHypo) { const Hypothesis *hypo = *iterHypo; OutputWordGraph(outputWordGraphStream, hypo, linkId); if (outputNBest) { const ArcList *arcList = hypo->GetArcList(); if (arcList != NULL) { ArcList::const_iterator iterArcList; for (iterArcList = arcList->begin() ; iterArcList != arcList->end() ; ++iterArcList) { const Hypothesis *loserHypo = *iterArcList; OutputWordGraph(outputWordGraphStream, loserHypo, linkId); } } } //if (outputNBest) } //for (iterHypo } // for (iterStack } void Manager::GetSearchGraph(vector& searchGraph) const { std::map < int, bool > connected; std::map < int, int > forward; std::map < int, double > forwardScore; // *** find connected hypotheses *** std::vector< const Hypothesis *> connectedList; GetConnectedGraph(&connected, &connectedList); // ** compute best forward path for each hypothesis *** // // forward cost of hypotheses on final stack is 0 const std::vector < HypothesisStack* > &hypoStackColl = m_search->GetHypothesisStacks(); const HypothesisStack &finalStack = *hypoStackColl.back(); HypothesisStack::const_iterator iterHypo; for (iterHypo = finalStack.begin() ; iterHypo != finalStack.end() ; ++iterHypo) { const Hypothesis *hypo = *iterHypo; forwardScore[ hypo->GetId() ] = 0.0f; forward[ hypo->GetId() ] = -1; } // compete for best forward score of previous hypothesis std::vector < HypothesisStack* >::const_iterator iterStack; for (iterStack = --hypoStackColl.end() ; iterStack != hypoStackColl.begin() ; --iterStack) { const HypothesisStack &stack = **iterStack; HypothesisStack::const_iterator iterHypo; for (iterHypo = stack.begin() ; iterHypo != stack.end() ; ++iterHypo) { const Hypothesis *hypo = *iterHypo; if (connected.find( hypo->GetId() ) != connected.end()) { // make a play for previous hypothesis const Hypothesis *prevHypo = hypo->GetPrevHypo(); double fscore = forwardScore[ hypo->GetId() ] + hypo->GetScore() - prevHypo->GetScore(); if (forwardScore.find( prevHypo->GetId() ) == forwardScore.end() || forwardScore.find( prevHypo->GetId() )->second < fscore) { forwardScore[ prevHypo->GetId() ] = fscore; forward[ prevHypo->GetId() ] = hypo->GetId(); } // all arcs also make a play const ArcList *arcList = hypo->GetArcList(); if (arcList != NULL) { ArcList::const_iterator iterArcList; for (iterArcList = arcList->begin() ; iterArcList != arcList->end() ; ++iterArcList) { const Hypothesis *loserHypo = *iterArcList; // make a play const Hypothesis *loserPrevHypo = loserHypo->GetPrevHypo(); double fscore = forwardScore[ hypo->GetId() ] + loserHypo->GetScore() - loserPrevHypo->GetScore(); if (forwardScore.find( loserPrevHypo->GetId() ) == forwardScore.end() || forwardScore.find( loserPrevHypo->GetId() )->second < fscore) { forwardScore[ loserPrevHypo->GetId() ] = fscore; forward[ loserPrevHypo->GetId() ] = loserHypo->GetId(); } } // end for arc list } // end if arc list empty } // end if hypo connected } // end for hypo } // end for stack // *** output all connected hypotheses *** // connected[ 0 ] = true; for (iterStack = hypoStackColl.begin() ; iterStack != hypoStackColl.end() ; ++iterStack) { const HypothesisStack &stack = **iterStack; HypothesisStack::const_iterator iterHypo; for (iterHypo = stack.begin() ; iterHypo != stack.end() ; ++iterHypo) { const Hypothesis *hypo = *iterHypo; if (connected.find( hypo->GetId() ) != connected.end()) { searchGraph.push_back(SearchGraphNode(hypo,NULL,forward[hypo->GetId()], forwardScore[hypo->GetId()])); const ArcList *arcList = hypo->GetArcList(); if (arcList != NULL) { ArcList::const_iterator iterArcList; for (iterArcList = arcList->begin() ; iterArcList != arcList->end() ; ++iterArcList) { const Hypothesis *loserHypo = *iterArcList; searchGraph.push_back(SearchGraphNode(loserHypo,hypo, forward[hypo->GetId()], forwardScore[hypo->GetId()])); } } // end if arcList empty } // end if connected } // end for iterHypo } // end for iterStack } void Manager::OutputFeatureWeightsForSLF(std::ostream &outputSearchGraphStream) const { outputSearchGraphStream.setf(std::ios::fixed); outputSearchGraphStream.precision(6); const vector& slf = StatelessFeatureFunction::GetStatelessFeatureFunctions(); const vector& sff = StatefulFeatureFunction::GetStatefulFeatureFunctions(); size_t featureIndex = 1; for (size_t i = 0; i < sff.size(); ++i) { featureIndex = OutputFeatureWeightsForSLF(featureIndex, sff[i], outputSearchGraphStream); } for (size_t i = 0; i < slf.size(); ++i) { /* if (slf[i]->GetScoreProducerWeightShortName() != "u" && slf[i]->GetScoreProducerWeightShortName() != "tm" && slf[i]->GetScoreProducerWeightShortName() != "I" && slf[i]->GetScoreProducerWeightShortName() != "g") */ { featureIndex = OutputFeatureWeightsForSLF(featureIndex, slf[i], outputSearchGraphStream); } } const vector& pds = PhraseDictionary::GetColl(); for( size_t i=0; i& gds = GenerationDictionary::GetColl(); for( size_t i=0; iGetScoreBreakdown(); // outputSearchGraphStream << scoreCollection << endl; const vector& slf =StatelessFeatureFunction::GetStatelessFeatureFunctions(); const vector& sff = StatefulFeatureFunction::GetStatefulFeatureFunctions(); size_t featureIndex = 1; for (size_t i = 0; i < sff.size(); ++i) { featureIndex = OutputFeatureValuesForSLF(featureIndex, zeros, hypo, sff[i], outputSearchGraphStream); } for (size_t i = 0; i < slf.size(); ++i) { /* if (slf[i]->GetScoreProducerWeightShortName() != "u" && slf[i]->GetScoreProducerWeightShortName() != "tm" && slf[i]->GetScoreProducerWeightShortName() != "I" && slf[i]->GetScoreProducerWeightShortName() != "g") */ { featureIndex = OutputFeatureValuesForSLF(featureIndex, zeros, hypo, slf[i], outputSearchGraphStream); } } const vector& pds = PhraseDictionary::GetColl(); for( size_t i=0; i& gds = GenerationDictionary::GetColl(); for( size_t i=0; i& slf =StatelessFeatureFunction::GetStatelessFeatureFunctions(); const vector& sff = StatefulFeatureFunction::GetStatefulFeatureFunctions(); size_t featureIndex = 1; for (size_t i = 0; i < sff.size(); ++i) { featureIndex = OutputFeatureValuesForHypergraph(featureIndex, hypo, sff[i], outputSearchGraphStream); } for (size_t i = 0; i < slf.size(); ++i) { /* if (slf[i]->GetScoreProducerWeightShortName() != "u" && slf[i]->GetScoreProducerWeightShortName() != "tm" && slf[i]->GetScoreProducerWeightShortName() != "I" && slf[i]->GetScoreProducerWeightShortName() != "g") */ { featureIndex = OutputFeatureValuesForHypergraph(featureIndex, hypo, slf[i], outputSearchGraphStream); } } const vector& pds = PhraseDictionary::GetColl(); for( size_t i=0; i& gds = GenerationDictionary::GetColl(); for( size_t i=0; iGetNumScoreComponents(); if (numScoreComps != 0) { vector values = StaticData::Instance().GetAllWeights().GetScoresForProducer(ff); for (size_t i = 0; i < numScoreComps; ++i) { outputSearchGraphStream << "# " << ff->GetScoreProducerDescription() << " " << ff->GetScoreProducerDescription() << " " << (i+1) << " of " << numScoreComps << endl << "x" << (index+i) << "scale=" << values[i] << endl; } return index+numScoreComps; } else { cerr << "Sparse features are not supported when outputting HTK standard lattice format" << endl; assert(false); return 0; } } size_t Manager::OutputFeatureValuesForSLF(size_t index, bool zeros, const Hypothesis* hypo, const FeatureFunction* ff, std::ostream &outputSearchGraphStream) const { // { const FeatureFunction* sp = ff; // const FVector& m_scores = scoreCollection.GetScoresVector(); // FVector& scores = const_cast(m_scores); // std::string prefix = sp->GetScoreProducerDescription() + FName::SEP; // // std::cout << "prefix==" << prefix << endl; // // cout << "m_scores==" << m_scores << endl; // // cout << "m_scores.size()==" << m_scores.size() << endl; // // cout << "m_scores.coreSize()==" << m_scores.coreSize() << endl; // // cout << "m_scores.cbegin() ?= m_scores.cend()\t" << (m_scores.cbegin() == m_scores.cend()) << endl; // // for(FVector::FNVmap::const_iterator i = m_scores.cbegin(); i != m_scores.cend(); i++) { // // std::cout<first) << "\t" << (i->second) << std::endl; // // } // for(int i=0, n=v.size(); iGetScoreBreakdown(); vector featureValues = scoreCollection.GetScoresForProducer(ff); size_t numScoreComps = featureValues.size();//featureValues.coreSize(); // if (numScoreComps != ScoreProducer::unlimited) { // vector values = StaticData::Instance().GetAllWeights().GetScoresForProducer(ff); for (size_t i = 0; i < numScoreComps; ++i) { outputSearchGraphStream << "x" << (index+i) << "=" << ((zeros) ? 0.0 : featureValues[i]) << " "; } return index+numScoreComps; // } else { // cerr << "Sparse features are not supported when outputting HTK standard lattice format" << endl; // assert(false); // return 0; // } } size_t Manager::OutputFeatureValuesForHypergraph(size_t index, const Hypothesis* hypo, const FeatureFunction* ff, std::ostream &outputSearchGraphStream) const { ScoreComponentCollection scoreCollection = hypo->GetScoreBreakdown(); const Hypothesis *prevHypo = hypo->GetPrevHypo(); if (prevHypo) { scoreCollection.MinusEquals( prevHypo->GetScoreBreakdown() ); } vector featureValues = scoreCollection.GetScoresForProducer(ff); size_t numScoreComps = featureValues.size(); if (numScoreComps > 1) { for (size_t i = 0; i < numScoreComps; ++i) { outputSearchGraphStream << ff->GetScoreProducerDescription() << i << "=" << featureValues[i] << " "; } } else { outputSearchGraphStream << ff->GetScoreProducerDescription() << "=" << featureValues[0] << " "; } return index+numScoreComps; } /**! Output search graph in hypergraph format of Kenneth Heafield's lazy hypergraph decoder */ void Manager::OutputSearchGraphAsHypergraph(long translationId, std::ostream &outputSearchGraphStream) const { VERBOSE(2,"Getting search graph to output as hypergraph for sentence " << translationId << std::endl) vector searchGraph; GetSearchGraph(searchGraph); map mosesIDToHypergraphID; // map hypergraphIDToMosesID; set terminalNodes; multimap hypergraphIDToArcs; VERBOSE(2,"Gathering information about search graph to output as hypergraph for sentence " << translationId << std::endl) long numNodes = 0; long endNode = 0; { long hypergraphHypothesisID = 0; for (size_t arcNumber = 0, size=searchGraph.size(); arcNumber < size; ++arcNumber) { // Get an id number for the previous hypothesis const Hypothesis *prevHypo = searchGraph[arcNumber].hypo->GetPrevHypo(); if (prevHypo!=NULL) { int mosesPrevHypothesisID = prevHypo->GetId(); if (mosesIDToHypergraphID.count(mosesPrevHypothesisID) == 0) { mosesIDToHypergraphID[mosesPrevHypothesisID] = hypergraphHypothesisID; // hypergraphIDToMosesID[hypergraphHypothesisID] = mosesPrevHypothesisID; hypergraphHypothesisID += 1; } } // Get an id number for this hypothesis int mosesHypothesisID; if (searchGraph[arcNumber].recombinationHypo) { mosesHypothesisID = searchGraph[arcNumber].recombinationHypo->GetId(); } else { mosesHypothesisID = searchGraph[arcNumber].hypo->GetId(); } if (mosesIDToHypergraphID.count(mosesHypothesisID) == 0) { mosesIDToHypergraphID[mosesHypothesisID] = hypergraphHypothesisID; // hypergraphIDToMosesID[hypergraphHypothesisID] = mosesHypothesisID; bool terminalNode = (searchGraph[arcNumber].forward == -1); if (terminalNode) { // Final arc to end node, representing the end of the sentence terminalNodes.insert(hypergraphHypothesisID); } hypergraphHypothesisID += 1; } // Record that this arc ends at this node hypergraphIDToArcs.insert(pair(mosesIDToHypergraphID[mosesHypothesisID],arcNumber)); } // Unique end node endNode = hypergraphHypothesisID; // mosesIDToHypergraphID[hypergraphHypothesisID] = hypergraphHypothesisID; numNodes = endNode + 1; } long numArcs = searchGraph.size() + terminalNodes.size(); // Print number of nodes and arcs outputSearchGraphStream << numNodes << " " << numArcs << endl; VERBOSE(2,"Search graph to output as hypergraph for sentence " << translationId << " contains " << numArcs << " arcs and " << numNodes << " nodes" << std::endl) VERBOSE(2,"Outputting search graph to output as hypergraph for sentence " << translationId << std::endl) for (int hypergraphHypothesisID=0; hypergraphHypothesisID < endNode; hypergraphHypothesisID+=1) { if (hypergraphHypothesisID % 100000 == 0) { VERBOSE(2,"Processed " << hypergraphHypothesisID << " of " << numNodes << " hypergraph nodes for sentence " << translationId << std::endl); } // int mosesID = hypergraphIDToMosesID[hypergraphHypothesisID]; size_t count = hypergraphIDToArcs.count(hypergraphHypothesisID); // VERBOSE(2,"Hypergraph node " << hypergraphHypothesisID << " has " << count << " incoming arcs" << std::endl) if (count > 0) { outputSearchGraphStream << count << "\n"; pair::iterator, multimap::iterator> range = hypergraphIDToArcs.equal_range(hypergraphHypothesisID); for (multimap::iterator it=range.first; it!=range.second; ++it) { int lineNumber = (*it).second; const Hypothesis *thisHypo = searchGraph[lineNumber].hypo; int mosesHypothesisID;// = thisHypo->GetId(); if (searchGraph[lineNumber].recombinationHypo) { mosesHypothesisID = searchGraph[lineNumber].recombinationHypo->GetId(); } else { mosesHypothesisID = searchGraph[lineNumber].hypo->GetId(); } // int actualHypergraphHypothesisID = mosesIDToHypergraphID[mosesHypothesisID]; UTIL_THROW_IF2( (hypergraphHypothesisID != mosesIDToHypergraphID[mosesHypothesisID]), "Error while writing search lattice as hypergraph for sentence " << translationId << ". " << "Moses node " << mosesHypothesisID << " was expected to have hypergraph id " << hypergraphHypothesisID << ", but actually had hypergraph id " << mosesIDToHypergraphID[mosesHypothesisID] << ". There are " << numNodes << " nodes in the search lattice." ); const Hypothesis *prevHypo = thisHypo->GetPrevHypo(); if (prevHypo==NULL) { // VERBOSE(2,"Hypergraph node " << hypergraphHypothesisID << " start of sentence" << std::endl) outputSearchGraphStream << " ||| \n"; } else { int startNode = mosesIDToHypergraphID[prevHypo->GetId()]; // VERBOSE(2,"Hypergraph node " << hypergraphHypothesisID << " has parent node " << startNode << std::endl) UTIL_THROW_IF2( (startNode >= hypergraphHypothesisID), "Error while writing search lattice as hypergraph for sentence" << translationId << ". " << "The nodes must be output in topological order. The code attempted to violate this restriction." ); const TargetPhrase &targetPhrase = thisHypo->GetCurrTargetPhrase(); int targetWordCount = targetPhrase.GetSize(); outputSearchGraphStream << "[" << startNode << "]"; for (int targetWordIndex=0; targetWordIndex outputSearchGraphStream << terminalNodes.size() << "\n"; for (set::iterator it=terminalNodes.begin(); it!=terminalNodes.end(); ++it) { outputSearchGraphStream << "[" << (*it) << "] ||| \n"; } } /**! Output search graph in HTK standard lattice format (SLF) */ void Manager::OutputSearchGraphAsSLF(long translationId, std::ostream &outputSearchGraphStream) const { vector searchGraph; GetSearchGraph(searchGraph); long numArcs = 0; long numNodes = 0; map nodes; set terminalNodes; // Unique start node nodes[0] = 0; for (size_t arcNumber = 0; arcNumber < searchGraph.size(); ++arcNumber) { int targetWordCount = searchGraph[arcNumber].hypo->GetCurrTargetPhrase().GetSize(); numArcs += targetWordCount; int hypothesisID = searchGraph[arcNumber].hypo->GetId(); if (nodes.count(hypothesisID) == 0) { numNodes += targetWordCount; nodes[hypothesisID] = numNodes; //numNodes += 1; bool terminalNode = (searchGraph[arcNumber].forward == -1); if (terminalNode) { numArcs += 1; } } } numNodes += 1; // Unique end node nodes[numNodes] = numNodes; outputSearchGraphStream << "UTTERANCE=Sentence_" << translationId << endl; outputSearchGraphStream << "VERSION=1.1" << endl; outputSearchGraphStream << "base=2.71828182845905" << endl; outputSearchGraphStream << "NODES=" << (numNodes+1) << endl; outputSearchGraphStream << "LINKS=" << numArcs << endl; OutputFeatureWeightsForSLF(outputSearchGraphStream); for (size_t arcNumber = 0, lineNumber = 0; lineNumber < searchGraph.size(); ++lineNumber) { const Hypothesis *thisHypo = searchGraph[lineNumber].hypo; const Hypothesis *prevHypo = thisHypo->GetPrevHypo(); if (prevHypo) { int startNode = nodes[prevHypo->GetId()]; int endNode = nodes[thisHypo->GetId()]; bool terminalNode = (searchGraph[lineNumber].forward == -1); const TargetPhrase &targetPhrase = thisHypo->GetCurrTargetPhrase(); int targetWordCount = targetPhrase.GetSize(); for (int targetWordIndex=0; targetWordIndexGetCurrSourceWordsRange().GetEndPos() << " out=" << searchNode.hypo->GetCurrTargetPhrase().GetStringRep(outputFactorOrder) << endl; return; } // output in extended format // if (searchNode.recombinationHypo != NULL) // outputSearchGraphStream << " hyp=" << searchNode.recombinationHypo->GetId(); // else outputSearchGraphStream << " hyp=" << searchNode.hypo->GetId(); outputSearchGraphStream << " stack=" << searchNode.hypo->GetWordsBitmap().GetNumWordsCovered() << " back=" << prevHypo->GetId() << " score=" << searchNode.hypo->GetScore() << " transition=" << (searchNode.hypo->GetScore() - prevHypo->GetScore()); if (searchNode.recombinationHypo != NULL) outputSearchGraphStream << " recombined=" << searchNode.recombinationHypo->GetId(); outputSearchGraphStream << " forward=" << searchNode.forward << " fscore=" << searchNode.fscore << " covered=" << searchNode.hypo->GetCurrSourceWordsRange().GetStartPos() << "-" << searchNode.hypo->GetCurrSourceWordsRange().GetEndPos(); // Modified so that -osgx is a superset of -osg (GST Oct 2011) ScoreComponentCollection scoreBreakdown = searchNode.hypo->GetScoreBreakdown(); scoreBreakdown.MinusEquals( prevHypo->GetScoreBreakdown() ); //outputSearchGraphStream << " scores = [ " << StaticData::Instance().GetAllWeights(); outputSearchGraphStream << " scores=\"" << scoreBreakdown << "\""; outputSearchGraphStream << " out=\"" << searchNode.hypo->GetSourcePhraseStringRep() << "|" << searchNode.hypo->GetCurrTargetPhrase().GetStringRep(outputFactorOrder) << "\"" << endl; // outputSearchGraphStream << " out=" << searchNode.hypo->GetCurrTargetPhrase().GetStringRep(outputFactorOrder) << endl; } void Manager::GetConnectedGraph( std::map< int, bool >* pConnected, std::vector< const Hypothesis* >* pConnectedList) const { std::map < int, bool >& connected = *pConnected; std::vector< const Hypothesis *>& connectedList = *pConnectedList; // start with the ones in the final stack const std::vector < HypothesisStack* > &hypoStackColl = m_search->GetHypothesisStacks(); const HypothesisStack &finalStack = *hypoStackColl.back(); HypothesisStack::const_iterator iterHypo; for (iterHypo = finalStack.begin() ; iterHypo != finalStack.end() ; ++iterHypo) { const Hypothesis *hypo = *iterHypo; connected[ hypo->GetId() ] = true; connectedList.push_back( hypo ); } // move back from known connected hypotheses for(size_t i=0; iGetPrevHypo(); if (prevHypo && prevHypo->GetId() > 0 // don't add empty hypothesis && connected.find( prevHypo->GetId() ) == connected.end()) { // don't add already added connected[ prevHypo->GetId() ] = true; connectedList.push_back( prevHypo ); } // add arcs const ArcList *arcList = hypo->GetArcList(); if (arcList != NULL) { ArcList::const_iterator iterArcList; for (iterArcList = arcList->begin() ; iterArcList != arcList->end() ; ++iterArcList) { const Hypothesis *loserHypo = *iterArcList; if (connected.find( loserHypo->GetId() ) == connected.end()) { // don't add already added connected[ loserHypo->GetId() ] = true; connectedList.push_back( loserHypo ); } } } } } void Manager::GetWinnerConnectedGraph( std::map< int, bool >* pConnected, std::vector< const Hypothesis* >* pConnectedList) const { std::map < int, bool >& connected = *pConnected; std::vector< const Hypothesis *>& connectedList = *pConnectedList; // start with the ones in the final stack const std::vector < HypothesisStack* > &hypoStackColl = m_search->GetHypothesisStacks(); const HypothesisStack &finalStack = *hypoStackColl.back(); HypothesisStack::const_iterator iterHypo; for (iterHypo = finalStack.begin() ; iterHypo != finalStack.end() ; ++iterHypo) { const Hypothesis *hypo = *iterHypo; connected[ hypo->GetId() ] = true; connectedList.push_back( hypo ); } // move back from known connected hypotheses for(size_t i=0; iGetPrevHypo(); if (prevHypo->GetId() > 0 // don't add empty hypothesis && connected.find( prevHypo->GetId() ) == connected.end()) { // don't add already added connected[ prevHypo->GetId() ] = true; connectedList.push_back( prevHypo ); } // add arcs const ArcList *arcList = hypo->GetArcList(); if (arcList != NULL) { ArcList::const_iterator iterArcList; for (iterArcList = arcList->begin() ; iterArcList != arcList->end() ; ++iterArcList) { const Hypothesis *loserHypo = *iterArcList; if (connected.find( loserHypo->GetPrevHypo()->GetId() ) == connected.end() && loserHypo->GetPrevHypo()->GetId() > 0) { // don't add already added & don't add hyp 0 connected[ loserHypo->GetPrevHypo()->GetId() ] = true; connectedList.push_back( loserHypo->GetPrevHypo() ); } } } } } #ifdef HAVE_PROTOBUF void SerializeEdgeInfo(const Hypothesis* hypo, hgmert::Hypergraph_Edge* edge) { hgmert::Rule* rule = edge->mutable_rule(); hypo->GetCurrTargetPhrase().WriteToRulePB(rule); const Hypothesis* prev = hypo->GetPrevHypo(); // if the feature values are empty, they default to 0 if (!prev) return; // score breakdown is an aggregate (forward) quantity, but the exported // graph object just wants the feature values on the edges const ScoreComponentCollection& scores = hypo->GetScoreBreakdown(); const ScoreComponentCollection& pscores = prev->GetScoreBreakdown(); for (unsigned int i = 0; i < scores.size(); ++i) edge->add_feature_values((scores[i] - pscores[i]) * -1.0); } hgmert::Hypergraph_Node* GetHGNode( const Hypothesis* hypo, std::map< int, int>* i2hgnode, hgmert::Hypergraph* hg, int* hgNodeIdx) { hgmert::Hypergraph_Node* hgnode; std::map < int, int >::iterator idxi = i2hgnode->find(hypo->GetId()); if (idxi == i2hgnode->end()) { *hgNodeIdx = ((*i2hgnode)[hypo->GetId()] = hg->nodes_size()); hgnode = hg->add_nodes(); } else { *hgNodeIdx = idxi->second; hgnode = hg->mutable_nodes(*hgNodeIdx); } return hgnode; } void Manager::SerializeSearchGraphPB( long translationId, std::ostream& outputStream) const { using namespace hgmert; std::map < int, bool > connected; std::map < int, int > i2hgnode; std::vector< const Hypothesis *> connectedList; GetConnectedGraph(&connected, &connectedList); connected[ 0 ] = true; Hypergraph hg; hg.set_is_sorted(false); int num_feats = (*m_search->GetHypothesisStacks().back()->begin())->GetScoreBreakdown().size(); hg.set_num_features(num_feats); StaticData::Instance().GetScoreIndexManager().SerializeFeatureNamesToPB(&hg); Hypergraph_Node* goal = hg.add_nodes(); // idx=0 goal node must have idx 0 Hypergraph_Node* source = hg.add_nodes(); // idx=1 i2hgnode[-1] = 1; // source node const std::vector < HypothesisStack* > &hypoStackColl = m_search->GetHypothesisStacks(); const HypothesisStack &finalStack = *hypoStackColl.back(); for (std::vector < HypothesisStack* >::const_iterator iterStack = hypoStackColl.begin(); iterStack != hypoStackColl.end() ; ++iterStack) { const HypothesisStack &stack = **iterStack; HypothesisStack::const_iterator iterHypo; for (iterHypo = stack.begin() ; iterHypo != stack.end() ; ++iterHypo) { const Hypothesis *hypo = *iterHypo; bool is_goal = hypo->GetWordsBitmap().IsComplete(); if (connected.find( hypo->GetId() ) != connected.end()) { int headNodeIdx; Hypergraph_Node* headNode = GetHGNode(hypo, &i2hgnode, &hg, &headNodeIdx); if (is_goal) { Hypergraph_Edge* ge = hg.add_edges(); ge->set_head_node(0); // goal ge->add_tail_nodes(headNodeIdx); ge->mutable_rule()->add_trg_words("[X,1]"); } Hypergraph_Edge* edge = hg.add_edges(); SerializeEdgeInfo(hypo, edge); edge->set_head_node(headNodeIdx); const Hypothesis* prev = hypo->GetPrevHypo(); int tailNodeIdx = 1; // source if (prev) tailNodeIdx = i2hgnode.find(prev->GetId())->second; edge->add_tail_nodes(tailNodeIdx); const ArcList *arcList = hypo->GetArcList(); if (arcList != NULL) { ArcList::const_iterator iterArcList; for (iterArcList = arcList->begin() ; iterArcList != arcList->end() ; ++iterArcList) { const Hypothesis *loserHypo = *iterArcList; UTIL_THROW_IF2(!connected[loserHypo->GetId()], "Hypothesis " << loserHypo->GetId() << " is not connected"); Hypergraph_Edge* edge = hg.add_edges(); SerializeEdgeInfo(loserHypo, edge); edge->set_head_node(headNodeIdx); tailNodeIdx = i2hgnode.find(loserHypo->GetPrevHypo()->GetId())->second; edge->add_tail_nodes(tailNodeIdx); } } // end if arcList empty } // end if connected } // end for iterHypo } // end for iterStack hg.SerializeToOstream(&outputStream); } #endif void Manager::OutputSearchGraph(long translationId, std::ostream &outputSearchGraphStream) const { vector searchGraph; GetSearchGraph(searchGraph); for (size_t i = 0; i < searchGraph.size(); ++i) { OutputSearchNode(translationId,outputSearchGraphStream,searchGraph[i]); } } void Manager::GetForwardBackwardSearchGraph(std::map< int, bool >* pConnected, std::vector< const Hypothesis* >* pConnectedList, std::map < const Hypothesis*, set< const Hypothesis* > >* pOutgoingHyps, vector< float>* pFwdBwdScores) const { std::map < int, bool > &connected = *pConnected; std::vector< const Hypothesis *>& connectedList = *pConnectedList; std::map < int, int > forward; std::map < int, double > forwardScore; std::map < const Hypothesis*, set > & outgoingHyps = *pOutgoingHyps; vector< float> & estimatedScores = *pFwdBwdScores; // *** find connected hypotheses *** GetWinnerConnectedGraph(&connected, &connectedList); // ** compute best forward path for each hypothesis *** // // forward cost of hypotheses on final stack is 0 const std::vector < HypothesisStack* > &hypoStackColl = m_search->GetHypothesisStacks(); const HypothesisStack &finalStack = *hypoStackColl.back(); HypothesisStack::const_iterator iterHypo; for (iterHypo = finalStack.begin() ; iterHypo != finalStack.end() ; ++iterHypo) { const Hypothesis *hypo = *iterHypo; forwardScore[ hypo->GetId() ] = 0.0f; forward[ hypo->GetId() ] = -1; } // compete for best forward score of previous hypothesis std::vector < HypothesisStack* >::const_iterator iterStack; for (iterStack = --hypoStackColl.end() ; iterStack != hypoStackColl.begin() ; --iterStack) { const HypothesisStack &stack = **iterStack; HypothesisStack::const_iterator iterHypo; for (iterHypo = stack.begin() ; iterHypo != stack.end() ; ++iterHypo) { const Hypothesis *hypo = *iterHypo; if (connected.find( hypo->GetId() ) != connected.end()) { // make a play for previous hypothesis const Hypothesis *prevHypo = hypo->GetPrevHypo(); double fscore = forwardScore[ hypo->GetId() ] + hypo->GetScore() - prevHypo->GetScore(); if (forwardScore.find( prevHypo->GetId() ) == forwardScore.end() || forwardScore.find( prevHypo->GetId() )->second < fscore) { forwardScore[ prevHypo->GetId() ] = fscore; forward[ prevHypo->GetId() ] = hypo->GetId(); } //store outgoing info outgoingHyps[prevHypo].insert(hypo); // all arcs also make a play const ArcList *arcList = hypo->GetArcList(); if (arcList != NULL) { ArcList::const_iterator iterArcList; for (iterArcList = arcList->begin() ; iterArcList != arcList->end() ; ++iterArcList) { const Hypothesis *loserHypo = *iterArcList; // make a play const Hypothesis *loserPrevHypo = loserHypo->GetPrevHypo(); double fscore = forwardScore[ hypo->GetId() ] + loserHypo->GetScore() - loserPrevHypo->GetScore(); if (forwardScore.find( loserPrevHypo->GetId() ) == forwardScore.end() || forwardScore.find( loserPrevHypo->GetId() )->second < fscore) { forwardScore[ loserPrevHypo->GetId() ] = fscore; forward[ loserPrevHypo->GetId() ] = loserHypo->GetId(); } //store outgoing info outgoingHyps[loserPrevHypo].insert(hypo); } // end for arc list } // end if arc list empty } // end if hypo connected } // end for hypo } // end for stack for (std::vector< const Hypothesis *>::iterator it = connectedList.begin(); it != connectedList.end(); ++it) { float estimatedScore = (*it)->GetScore() + forwardScore[(*it)->GetId()]; estimatedScores.push_back(estimatedScore); } } const Hypothesis *Manager::GetBestHypothesis() const { return m_search->GetBestHypothesis(); } int Manager::GetNextHypoId() { return m_hypoId++; } void Manager::ResetSentenceStats(const InputType& source) { m_sentenceStats = std::auto_ptr(new SentenceStats(source)); } SentenceStats& Manager::GetSentenceStats() const { return *m_sentenceStats; } }