#include "BleuScoreFeature.h" #include "StaticData.h" #include "UserMessage.h" using namespace std; namespace Moses { size_t BleuScoreState::bleu_order = 4; BleuScoreState::BleuScoreState(): m_words(1), m_source_length(0), m_target_length(0), m_scaled_ref_length(0), m_ngram_counts(bleu_order), m_ngram_matches(bleu_order) { } int BleuScoreState::Compare(const FFState& o) const { if (&o == this) return 0; const StaticData &staticData = StaticData::Instance(); SearchAlgorithm searchAlgorithm = staticData.GetSearchAlgorithm(); bool chartDecoding = (searchAlgorithm == ChartDecoding); if (chartDecoding) return 0; const BleuScoreState& other = dynamic_cast(o); int c = m_words.Compare(other.m_words); if (c != 0) return c; /*for(size_t i = 0; i < m_ngram_counts.size(); i++) { if (m_ngram_counts[i] < other.m_ngram_counts[i]) return -1; if (m_ngram_counts[i] > other.m_ngram_counts[i]) return 1; if (m_ngram_matches[i] < other.m_ngram_matches[i]) return -1; if (m_ngram_matches[i] > other.m_ngram_matches[i]) return 1; }*/ return 0; } std::ostream& operator<<(std::ostream& out, const BleuScoreState& state) { state.print(out); return out; } void BleuScoreState::print(std::ostream& out) const { out << "ref=" << m_scaled_ref_length << ";source=" << m_source_length << ";target=" << m_target_length << ";counts="; for (size_t i = 0; i < bleu_order; ++i) { out << m_ngram_matches[i] << "/" << m_ngram_counts[i] << ","; } out << "ctxt=" << m_words; } void BleuScoreState::AddNgramCountAndMatches(std::vector< size_t >& counts, std::vector< size_t >& matches) { for (size_t order = 0; order < BleuScoreState::bleu_order; ++order) { m_ngram_counts[order] += counts[order]; m_ngram_matches[order] += matches[order]; } } BleuScoreFeature::BleuScoreFeature(const std::string &line) :StatefulFeatureFunction("BleuScoreFeature",1, line), m_enabled(true), m_sentence_bleu(true), m_simple_history_bleu(false), m_count_history(BleuScoreState::bleu_order), m_match_history(BleuScoreState::bleu_order), m_source_length_history(0), m_target_length_history(0), m_ref_length_history(0), m_scale_by_input_length(true), m_scale_by_avg_input_length(false), m_scale_by_inverse_length(false), m_scale_by_avg_inverse_length(false), m_scale_by_x(1), m_historySmoothing(0.9), m_smoothing_scheme(PLUS_POINT_ONE) { for (size_t i = 0; i < m_args.size(); ++i) { const vector &args = m_args[i]; if (args[0] == "references") { vector referenceFiles = Tokenize(args[1]); CHECK(referenceFiles.size()); vector > references(referenceFiles.size()); for (size_t i =0; i < referenceFiles.size(); ++i) { ifstream in(referenceFiles[i].c_str()); if (!in) { stringstream strme; strme << "Unable to load references from " << referenceFiles[i]; UserMessage::Add(strme.str()); abort(); } string line; while (getline(in,line)) { /* if (GetSearchAlgorithm() == ChartDecoding) { stringstream tmp; tmp << " " << line << " "; line = tmp.str(); } */ references[i].push_back(line); } if (i > 0) { if (references[i].size() != references[i-1].size()) { UserMessage::Add("Reference files are of different lengths"); abort(); } } in.close(); } // for (size_t i =0; i < referenceFiles.size(); ++i) { //Set the references in the bleu feature LoadReferences(references); } // if (args[0] == "references") { } // for (size_t i = 0; i < toks.size(); ++i) { } void BleuScoreFeature::PrintHistory(std::ostream& out) const { out << "source length history=" << m_source_length_history << endl; out << "target length history=" << m_target_length_history << endl; out << "ref length history=" << m_ref_length_history << endl; for (size_t i = 0; i < BleuScoreState::bleu_order; ++i) { out << "match history/count history (" << i << "):" << m_match_history[i] << "/" << m_count_history[i] << endl; } } void BleuScoreFeature::SetBleuParameters(bool disable, bool sentenceBleu, bool scaleByInputLength, bool scaleByAvgInputLength, bool scaleByInverseLength, bool scaleByAvgInverseLength, float scaleByX, float historySmoothing, size_t scheme, bool simpleHistoryBleu) { m_enabled = !disable; m_sentence_bleu = sentenceBleu; m_simple_history_bleu = simpleHistoryBleu; m_scale_by_input_length = scaleByInputLength; m_scale_by_avg_input_length = scaleByAvgInputLength; m_scale_by_inverse_length = scaleByInverseLength; m_scale_by_avg_inverse_length = scaleByAvgInverseLength; m_scale_by_x = scaleByX; m_historySmoothing = historySmoothing; m_smoothing_scheme = (SmoothingScheme)scheme; } // Incoming references (refs) are stored as refs[file_id][[sent_id][reference]] // This data structure: m_refs[sent_id][[vector][ngrams]] void BleuScoreFeature::LoadReferences(const std::vector< std::vector< std::string > >& refs) { m_refs.clear(); FactorCollection& fc = FactorCollection::Instance(); for (size_t file_id = 0; file_id < refs.size(); file_id++) { for (size_t sent_id = 0; sent_id < refs[file_id].size(); sent_id++) { const string& ref = refs[file_id][sent_id]; vector refTokens = Tokenize(ref); if (file_id == 0) m_refs[sent_id] = RefValue(); pair,NGrams>& ref_pair = m_refs[sent_id]; (ref_pair.first).push_back(refTokens.size()); for (size_t order = 1; order <= BleuScoreState::bleu_order; order++) { for (size_t end_idx = order; end_idx <= refTokens.size(); end_idx++) { Phrase ngram(1); for (size_t s_idx = end_idx - order; s_idx < end_idx; s_idx++) { const Factor* f = fc.AddFactor(Output, 0, refTokens[s_idx]); Word w; w.SetFactor(0, f); ngram.AddWord(w); } ref_pair.second[ngram] += 1; } } } } // cerr << "Number of ref files: " << refs.size() << endl; // for (size_t i = 0; i < m_refs.size(); ++i) { // cerr << "Sent id " << i << ", number of references: " << (m_refs[i].first).size() << endl; // } } void BleuScoreFeature::SetCurrSourceLength(size_t source_length) { m_cur_source_length = source_length; } void BleuScoreFeature::SetCurrNormSourceLength(size_t source_length) { m_cur_norm_source_length = source_length; } // m_refs[sent_id][[vector][ngrams]] void BleuScoreFeature::SetCurrShortestRefLength(size_t sent_id) { // look for shortest reference int shortestRef = -1; for (size_t i = 0; i < (m_refs[sent_id].first).size(); ++i) { if (shortestRef == -1 || (m_refs[sent_id].first)[i] < shortestRef) shortestRef = (m_refs[sent_id].first)[i]; } m_cur_ref_length = shortestRef; // cerr << "Set shortest cur_ref_length: " << m_cur_ref_length << endl; } void BleuScoreFeature::SetCurrAvgRefLength(size_t sent_id) { // compute average reference length size_t sum = 0; size_t numberRefs = (m_refs[sent_id].first).size(); for (size_t i = 0; i < numberRefs; ++i) { sum += (m_refs[sent_id].first)[i]; } m_cur_ref_length = (float)sum/numberRefs; // cerr << "Set average cur_ref_length: " << m_cur_ref_length << endl; } void BleuScoreFeature::SetCurrReferenceNgrams(size_t sent_id) { m_cur_ref_ngrams = m_refs[sent_id].second; } size_t BleuScoreFeature::GetShortestRefIndex(size_t ref_id) { // look for shortest reference int shortestRef = -1; size_t shortestRefIndex = 0; for (size_t i = 0; i < (m_refs[ref_id].first).size(); ++i) { if (shortestRef == -1 || (m_refs[ref_id].first)[i] < shortestRef) { shortestRef = (m_refs[ref_id].first)[i]; shortestRefIndex = i; } } return shortestRefIndex; } /* * Update the pseudo-document O after each translation of a source sentence. * (O is an exponentially-weighted moving average of vectors c(e;{r_k})) * O = m_historySmoothing * (O + c(e_oracle)) * O_f = m_historySmoothing * (O_f + |f|) input length of pseudo-document */ void BleuScoreFeature::UpdateHistory(const vector< const Word* >& hypo) { Phrase phrase(hypo); std::vector< size_t > ngram_counts(BleuScoreState::bleu_order); std::vector< size_t > ngram_matches(BleuScoreState::bleu_order); // compute vector c(e;{r_k}): // vector of effective reference length, number of ngrams in e, number of ngram matches between e and r_k GetNgramMatchCounts(phrase, m_cur_ref_ngrams, ngram_counts, ngram_matches, 0); // update counts and matches for every ngram length with counts from hypo for (size_t i = 0; i < BleuScoreState::bleu_order; i++) { m_count_history[i] = m_historySmoothing * (m_count_history[i] + ngram_counts[i]); m_match_history[i] = m_historySmoothing * (m_match_history[i] + ngram_matches[i]); } // update counts for reference and target length m_source_length_history = m_historySmoothing * (m_source_length_history + m_cur_source_length); m_target_length_history = m_historySmoothing * (m_target_length_history + hypo.size()); m_ref_length_history = m_historySmoothing * (m_ref_length_history + m_cur_ref_length); } /* * Update history with a batch of translations */ void BleuScoreFeature::UpdateHistory(const vector< vector< const Word* > >& hypos, vector& sourceLengths, vector& ref_ids, size_t rank, size_t epoch) { for (size_t ref_id = 0; ref_id < hypos.size(); ++ref_id){ Phrase phrase(hypos[ref_id]); std::vector< size_t > ngram_counts(BleuScoreState::bleu_order); std::vector< size_t > ngram_matches(BleuScoreState::bleu_order); // set current source and reference information for each oracle in the batch size_t cur_source_length = sourceLengths[ref_id]; size_t hypo_length = hypos[ref_id].size(); size_t cur_ref_length = GetClosestRefLength(ref_ids[ref_id], hypo_length); NGrams cur_ref_ngrams = m_refs[ref_ids[ref_id]].second; cerr << "reference length: " << cur_ref_length << endl; // compute vector c(e;{r_k}): // vector of effective reference length, number of ngrams in e, number of ngram matches between e and r_k GetNgramMatchCounts(phrase, cur_ref_ngrams, ngram_counts, ngram_matches, 0); // update counts and matches for every ngram length with counts from hypo for (size_t i = 0; i < BleuScoreState::bleu_order; i++) { m_count_history[i] += ngram_counts[i]; m_match_history[i] += ngram_matches[i]; // do this for last position in batch if (ref_id == hypos.size() - 1) { m_count_history[i] *= m_historySmoothing; m_match_history[i] *= m_historySmoothing; } } // update counts for reference and target length m_source_length_history += cur_source_length; m_target_length_history += hypos[ref_id].size(); m_ref_length_history += cur_ref_length; // do this for last position in batch if (ref_id == hypos.size() - 1) { cerr << "Rank " << rank << ", epoch " << epoch << " ,source length history: " << m_source_length_history << " --> " << m_source_length_history * m_historySmoothing << endl; cerr << "Rank " << rank << ", epoch " << epoch << " ,target length history: " << m_target_length_history << " --> " << m_target_length_history * m_historySmoothing << endl; m_source_length_history *= m_historySmoothing; m_target_length_history *= m_historySmoothing; m_ref_length_history *= m_historySmoothing; } } } /* * Print batch of reference translations */ /*void BleuScoreFeature::PrintReferenceLength(const vector& ref_ids) { for (size_t ref_id = 0; ref_id < ref_ids.size(); ++ref_id){ size_t cur_ref_length = (m_refs[ref_ids[ref_id]].first)[0]; // TODO!! cerr << "reference length: " << cur_ref_length << endl; } }*/ size_t BleuScoreFeature::GetClosestRefLength(size_t ref_id, int hypoLength) { // look for closest reference int currentDist = -1; int closestRefLength = -1; for (size_t i = 0; i < (m_refs[ref_id].first).size(); ++i) { if (closestRefLength == -1 || abs(hypoLength - (int)(m_refs[ref_id].first)[i]) < currentDist) { closestRefLength = (m_refs[ref_id].first)[i]; currentDist = abs(hypoLength - (int)(m_refs[ref_id].first)[i]); } } return (size_t)closestRefLength; } /* * Given a phrase (current translation) calculate its ngram counts and * its ngram matches against the ngrams in the reference translation */ void BleuScoreFeature::GetNgramMatchCounts(Phrase& phrase, const NGrams& ref_ngram_counts, std::vector< size_t >& ret_counts, std::vector< size_t >& ret_matches, size_t skip_first) const { NGrams::const_iterator ref_ngram_counts_iter; size_t ngram_start_idx, ngram_end_idx; // Chiang et al (2008) use unclipped counts of ngram matches for (size_t end_idx = skip_first; end_idx < phrase.GetSize(); end_idx++) { for (size_t order = 0; order < BleuScoreState::bleu_order; order++) { if (order > end_idx) break; ngram_end_idx = end_idx; ngram_start_idx = end_idx - order; Phrase ngram = phrase.GetSubString(WordsRange(ngram_start_idx, ngram_end_idx), 0); ret_counts[order]++; ref_ngram_counts_iter = ref_ngram_counts.find(ngram); if (ref_ngram_counts_iter != ref_ngram_counts.end()) ret_matches[order]++; } } } // score ngrams of words that have been added before the previous word span void BleuScoreFeature::GetNgramMatchCounts_prefix(Phrase& phrase, const NGrams& ref_ngram_counts, std::vector< size_t >& ret_counts, std::vector< size_t >& ret_matches, size_t new_start_indices, size_t last_end_index) const { NGrams::const_iterator ref_ngram_counts_iter; size_t ngram_start_idx, ngram_end_idx; // Chiang et al (2008) use unclipped counts of ngram matches for (size_t start_idx = 0; start_idx < new_start_indices; start_idx++) { for (size_t order = 0; order < BleuScoreState::bleu_order; order++) { ngram_start_idx = start_idx; ngram_end_idx = start_idx + order; if (order > ngram_end_idx) break; if (ngram_end_idx > last_end_index) break; Phrase ngram = phrase.GetSubString(WordsRange(ngram_start_idx, ngram_end_idx), 0); ret_counts[order]++; ref_ngram_counts_iter = ref_ngram_counts.find(ngram); if (ref_ngram_counts_iter != ref_ngram_counts.end()) ret_matches[order]++; } } } // score ngrams around the overlap of two previously scored phrases void BleuScoreFeature::GetNgramMatchCounts_overlap(Phrase& phrase, const NGrams& ref_ngram_counts, std::vector< size_t >& ret_counts, std::vector< size_t >& ret_matches, size_t overlap_index) const { NGrams::const_iterator ref_ngram_counts_iter; size_t ngram_start_idx, ngram_end_idx; // Chiang et al (2008) use unclipped counts of ngram matches for (size_t end_idx = overlap_index; end_idx < phrase.GetSize(); end_idx++) { if (end_idx >= (overlap_index+BleuScoreState::bleu_order-1)) break; for (size_t order = 0; order < BleuScoreState::bleu_order; order++) { if (order > end_idx) break; ngram_end_idx = end_idx; ngram_start_idx = end_idx - order; if (ngram_start_idx >= overlap_index) continue; // only score ngrams that span the overlap point Phrase ngram = phrase.GetSubString(WordsRange(ngram_start_idx, ngram_end_idx), 0); ret_counts[order]++; ref_ngram_counts_iter = ref_ngram_counts.find(ngram); if (ref_ngram_counts_iter != ref_ngram_counts.end()) ret_matches[order]++; } } } void BleuScoreFeature::GetClippedNgramMatchesAndCounts(Phrase& phrase, const NGrams& ref_ngram_counts, std::vector< size_t >& ret_counts, std::vector< size_t >& ret_matches, size_t skip_first) const { NGrams::const_iterator ref_ngram_counts_iter; size_t ngram_start_idx, ngram_end_idx; Matches ngram_matches; for (size_t end_idx = skip_first; end_idx < phrase.GetSize(); end_idx++) { for (size_t order = 0; order < BleuScoreState::bleu_order; order++) { if (order > end_idx) break; ngram_end_idx = end_idx; ngram_start_idx = end_idx - order; Phrase ngram = phrase.GetSubString(WordsRange(ngram_start_idx, ngram_end_idx), 0); ret_counts[order]++; ref_ngram_counts_iter = ref_ngram_counts.find(ngram); if (ref_ngram_counts_iter != ref_ngram_counts.end()) { ngram_matches[order][ngram]++; } } } // clip ngram matches for (size_t order = 0; order < BleuScoreState::bleu_order; order++) { NGrams::const_iterator iter; // iterate over ngram counts for every ngram order for (iter=ngram_matches[order].begin(); iter != ngram_matches[order].end(); ++iter) { ref_ngram_counts_iter = ref_ngram_counts.find(iter->first); if (iter->second > ref_ngram_counts_iter->second) { ret_matches[order] += ref_ngram_counts_iter->second; } else { ret_matches[order] += iter->second; } } } } /* * Given a previous state, compute Bleu score for the updated state with an additional target * phrase translated. */ FFState* BleuScoreFeature::Evaluate(const Hypothesis& cur_hypo, const FFState* prev_state, ScoreComponentCollection* accumulator) const { if (!m_enabled) return new BleuScoreState(); NGrams::const_iterator reference_ngrams_iter; const BleuScoreState& ps = dynamic_cast(*prev_state); BleuScoreState* new_state = new BleuScoreState(ps); float old_bleu, new_bleu; size_t num_new_words, ctx_start_idx, ctx_end_idx; // Calculate old bleu; old_bleu = CalculateBleu(new_state); // Get context and append new words. num_new_words = cur_hypo.GetCurrTargetLength(); if (num_new_words == 0) { return new_state; } Phrase new_words = ps.m_words; new_words.Append(cur_hypo.GetCurrTargetPhrase()); //cerr << "NW: " << new_words << endl; // get ngram matches for new words GetNgramMatchCounts(new_words, m_cur_ref_ngrams, new_state->m_ngram_counts, new_state->m_ngram_matches, new_state->m_words.GetSize()); // number of words in previous states // Update state variables ctx_end_idx = new_words.GetSize()-1; size_t bleu_context_length = BleuScoreState::bleu_order -1; if (ctx_end_idx > bleu_context_length) { ctx_start_idx = ctx_end_idx - bleu_context_length; } else { ctx_start_idx = 0; } WordsBitmap coverageVector = cur_hypo.GetWordsBitmap(); new_state->m_source_length = coverageVector.GetNumWordsCovered(); new_state->m_words = new_words.GetSubString(WordsRange(ctx_start_idx, ctx_end_idx)); new_state->m_target_length += cur_hypo.GetCurrTargetLength(); // we need a scaled reference length to compare the current target phrase to the corresponding reference phrase new_state->m_scaled_ref_length = m_cur_ref_length * ((float)coverageVector.GetNumWordsCovered()/coverageVector.GetSize()); // Calculate new bleu. new_bleu = CalculateBleu(new_state); // Set score to new Bleu score accumulator->PlusEquals(this, new_bleu - old_bleu); return new_state; } FFState* BleuScoreFeature::EvaluateChart(const ChartHypothesis& cur_hypo, int featureID, ScoreComponentCollection* accumulator ) const { if (!m_enabled) return new BleuScoreState(); NGrams::const_iterator reference_ngrams_iter; const Phrase& curr_target_phrase = static_cast(cur_hypo.GetCurrTargetPhrase()); // cerr << "\nCur target phrase: " << cur_hypo.GetTargetLHS() << " --> " << curr_target_phrase << endl; // Calculate old bleu of previous states float old_bleu = 0, new_bleu = 0; size_t num_old_words = 0, num_words_first_prev = 0; size_t num_words_added_left = 0, num_words_added_right = 0; // double-check cases where more than two previous hypotheses were combined assert(cur_hypo.GetPrevHypos().size() <= 2); BleuScoreState* new_state; if (cur_hypo.GetPrevHypos().size() == 0) new_state = new BleuScoreState(); else { const FFState* prev_state_zero = cur_hypo.GetPrevHypo(0)->GetFFState(featureID); const BleuScoreState& ps_zero = dynamic_cast(*prev_state_zero); new_state = new BleuScoreState(ps_zero); num_words_first_prev = ps_zero.m_target_length; for (size_t i = 0; i < cur_hypo.GetPrevHypos().size(); ++i) { const FFState* prev_state = cur_hypo.GetPrevHypo(i)->GetFFState(featureID); const BleuScoreState* ps = dynamic_cast(prev_state); BleuScoreState* ps_nonConst = const_cast(ps); // cerr << "prev phrase: " << cur_hypo.GetPrevHypo(i)->GetOutputPhrase() // << " ( " << cur_hypo.GetPrevHypo(i)->GetTargetLHS() << ")" << endl; old_bleu += CalculateBleu(ps_nonConst); num_old_words += ps->m_target_length; if (i > 0) // add ngram matches from other previous states new_state->AddNgramCountAndMatches(ps_nonConst->m_ngram_counts, ps_nonConst->m_ngram_matches); } } // check if we are already done (don't add and ) size_t numWordsCovered = cur_hypo.GetCurrSourceRange().GetNumWordsCovered(); if (numWordsCovered == m_cur_source_length) { // Bleu score stays the same, do not need to add anything //accumulator->PlusEquals(this, 0); return new_state; } // set new context Phrase new_words = cur_hypo.GetOutputPhrase(); new_state->m_words = new_words; size_t num_curr_words = new_words.GetSize(); // get ngram matches for new words if (num_old_words == 0) { // cerr << "compute right ngram context" << endl; GetNgramMatchCounts(new_words, m_cur_ref_ngrams, new_state->m_ngram_counts, new_state->m_ngram_matches, 0); } else if (new_words.GetSize() == num_old_words) { // two hypotheses were glued together, compute new ngrams on the basis of first hypothesis num_words_added_right = num_curr_words - num_words_first_prev; // score around overlap point // cerr << "compute overlap ngram context (" << (num_words_first_prev) << ")" << endl; GetNgramMatchCounts_overlap(new_words, m_cur_ref_ngrams, new_state->m_ngram_counts, new_state->m_ngram_matches, num_words_first_prev); } else if (num_old_words + curr_target_phrase.GetNumTerminals() == num_curr_words) { assert(curr_target_phrase.GetSize() == curr_target_phrase.GetNumTerminals()+1); // previous hypothesis + rule with 1 non-terminal were combined (NT substituted by Ts) for (size_t i = 0; i < curr_target_phrase.GetSize(); ++i) if (curr_target_phrase.GetWord(i).IsNonTerminal()) { num_words_added_left = i; num_words_added_right = curr_target_phrase.GetSize() - (i+1); break; } // left context // cerr << "compute left ngram context" << endl; if (num_words_added_left > 0) GetNgramMatchCounts_prefix(new_words, m_cur_ref_ngrams, new_state->m_ngram_counts, new_state->m_ngram_matches, num_words_added_left, num_curr_words - num_words_added_right - 1); // right context // cerr << "compute right ngram context" << endl; if (num_words_added_right > 0) GetNgramMatchCounts(new_words, m_cur_ref_ngrams, new_state->m_ngram_counts, new_state->m_ngram_matches, num_words_added_left + num_old_words); } else { cerr << "undefined state.. " << endl; exit(1); } // Update state variables size_t ctx_start_idx = 0; size_t ctx_end_idx = new_words.GetSize()-1; size_t bleu_context_length = BleuScoreState::bleu_order -1; if (ctx_end_idx > bleu_context_length) { ctx_start_idx = ctx_end_idx - bleu_context_length; } new_state->m_source_length = cur_hypo.GetCurrSourceRange().GetNumWordsCovered(); new_state->m_words = new_words.GetSubString(WordsRange(ctx_start_idx, ctx_end_idx)); new_state->m_target_length = cur_hypo.GetOutputPhrase().GetSize(); // we need a scaled reference length to compare the current target phrase to the corresponding // reference phrase size_t cur_source_length = m_cur_source_length; new_state->m_scaled_ref_length = m_cur_ref_length * (float(new_state->m_source_length)/cur_source_length); // Calculate new bleu. new_bleu = CalculateBleu(new_state); // Set score to new Bleu score accumulator->PlusEquals(this, new_bleu - old_bleu); return new_state; } /** * Calculate real sentence Bleu score of complete translation */ float BleuScoreFeature::CalculateBleu(Phrase translation) const { if (translation.GetSize() == 0) return 0.0; Phrase normTranslation = translation; // remove start and end symbol for chart decoding if (m_cur_source_length != m_cur_norm_source_length) { WordsRange* range = new WordsRange(1, translation.GetSize()-2); normTranslation = translation.GetSubString(*range); } // get ngram matches for translation BleuScoreState* state = new BleuScoreState(); GetClippedNgramMatchesAndCounts(normTranslation, m_cur_ref_ngrams, state->m_ngram_counts, state->m_ngram_matches, 0); // number of words in previous states // set state variables state->m_words = normTranslation; state->m_source_length = m_cur_norm_source_length; state->m_target_length = normTranslation.GetSize(); state->m_scaled_ref_length = m_cur_ref_length; // Calculate bleu. return CalculateBleu(state); } /* * Calculate Bleu score for a partial hypothesis given as state. */ float BleuScoreFeature::CalculateBleu(BleuScoreState* state) const { if (!state->m_ngram_counts[0]) return 0; if (!state->m_ngram_matches[0]) return 0; // if we have no unigram matches, score should be 0 float precision = 1.0; float smooth = 1; float smoothed_count, smoothed_matches; if (m_sentence_bleu || m_simple_history_bleu) { // Calculate geometric mean of modified ngram precisions // BLEU = BP * exp(SUM_1_4 1/4 * log p_n) // = BP * 4th root(PRODUCT_1_4 p_n) for (size_t i = 0; i < BleuScoreState::bleu_order; i++) { if (state->m_ngram_counts[i]) { smoothed_matches = state->m_ngram_matches[i]; smoothed_count = state->m_ngram_counts[i]; switch (m_smoothing_scheme) { case PLUS_ONE: default: if (i > 0) { // smoothing for all n > 1 smoothed_matches += 1; smoothed_count += 1; } break; case PLUS_POINT_ONE: if (i > 0) { // smoothing for all n > 1 smoothed_matches += 0.1; smoothed_count += 0.1; } break; case PAPINENI: if (state->m_ngram_matches[i] == 0) { smooth *= 0.5; smoothed_matches += smooth; smoothed_count += smooth; } break; } if (m_simple_history_bleu) { smoothed_matches += m_match_history[i]; smoothed_count += m_count_history[i]; } precision *= smoothed_matches/smoothed_count; } } // take geometric mean precision = pow(precision, (float)1/4); // Apply brevity penalty if applicable. // BP = 1 if c > r // BP = e^(1- r/c)) if c <= r // where // c: length of the candidate translation // r: effective reference length (sum of best match lengths for each candidate sentence) if (m_simple_history_bleu) { if ((m_target_length_history + state->m_target_length) < (m_ref_length_history + state->m_scaled_ref_length)) { float smoothed_target_length = m_target_length_history + state->m_target_length; float smoothed_ref_length = m_ref_length_history + state->m_scaled_ref_length; precision *= exp(1 - (smoothed_ref_length/smoothed_target_length)); } } else { if (state->m_target_length < state->m_scaled_ref_length) { float target_length = state->m_target_length; float ref_length = state->m_scaled_ref_length; precision *= exp(1 - (ref_length/target_length)); } } //cerr << "precision: " << precision << endl; // Approximate bleu score as of Chiang/Resnik is scaled by the size of the input: // B(e;f,{r_k}) = (O_f + |f|) * BLEU(O + c(e;{r_k})) // where c(e;) is a vector of reference length, ngram counts and ngram matches if (m_scale_by_input_length) { precision *= m_cur_norm_source_length; } else if (m_scale_by_avg_input_length) { precision *= m_avg_input_length; } else if (m_scale_by_inverse_length) { precision *= (100/m_cur_norm_source_length); } else if (m_scale_by_avg_inverse_length) { precision *= (100/m_avg_input_length); } return precision * m_scale_by_x; } else { // Revised history BLEU: compute Bleu in the context of the pseudo-document // B(b) = size_of_oracle_doc * (Bleu(B_hist + b) - Bleu(B_hist)) // Calculate geometric mean of modified ngram precisions // BLEU = BP * exp(SUM_1_4 1/4 * log p_n) // = BP * 4th root(PRODUCT_1_4 p_n) for (size_t i = 0; i < BleuScoreState::bleu_order; i++) { if (state->m_ngram_counts[i]) { smoothed_matches = m_match_history[i] + state->m_ngram_matches[i] + 0.1; smoothed_count = m_count_history[i] + state->m_ngram_counts[i] + 0.1; precision *= smoothed_matches/smoothed_count; } } // take geometric mean precision = pow(precision, (float)1/4); // Apply brevity penalty if applicable. if ((m_target_length_history + state->m_target_length) < (m_ref_length_history + state->m_scaled_ref_length)) precision *= exp(1 - ((m_ref_length_history + state->m_scaled_ref_length)/(m_target_length_history + state->m_target_length))); cerr << "precision: " << precision << endl; // **BLEU score of pseudo-document** float precision_pd = 1.0; if (m_target_length_history > 0) { for (size_t i = 0; i < BleuScoreState::bleu_order; i++) if (m_count_history[i] != 0) precision_pd *= (m_match_history[i] + 0.1)/(m_count_history[i] + 0.1); // take geometric mean precision_pd = pow(precision_pd, (float)1/4); // Apply brevity penalty if applicable. if (m_target_length_history < m_ref_length_history) precision_pd *= exp(1 - (m_ref_length_history/m_target_length_history)); } else precision_pd = 0; // **end BLEU of pseudo-document** cerr << "precision pd: " << precision_pd << endl; float sentence_impact; if (m_target_length_history > 0) sentence_impact = m_target_length_history * (precision - precision_pd); else sentence_impact = precision; cerr << "sentence impact: " << sentence_impact << endl; return sentence_impact * m_scale_by_x; } } const FFState* BleuScoreFeature::EmptyHypothesisState(const InputType& input) const { return new BleuScoreState(); } } // namespace.