// $Id$ // vim:tabstop=2 /*********************************************************************** Moses - factored phrase-based language decoder Copyright (C) 2006 University of Edinburgh This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ***********************************************************************/ #include #include #include #include #include "TranslationOption.h" #include "TranslationOptionCollection.h" #include "Hypothesis.h" #include "Util.h" #include "SquareMatrix.h" #include "StaticData.h" #include "InputType.h" #include "Manager.h" #include "IOWrapper.h" #include "moses/FF/FFState.h" #include "moses/FF/StatefulFeatureFunction.h" #include "moses/FF/StatelessFeatureFunction.h" #include using namespace std; namespace Moses { #ifdef USE_HYPO_POOL ObjectPool Hypothesis::s_objectPool("Hypothesis", 300000); #endif Hypothesis:: Hypothesis(Manager& manager, InputType const& source, const TranslationOption &initialTransOpt) : m_prevHypo(NULL) , m_sourceCompleted(source.GetSize(), manager.GetSource().m_sourceCompleted) , m_sourceInput(source) , m_currSourceWordsRange( m_sourceCompleted.GetFirstGapPos()>0 ? 0 : NOT_FOUND, m_sourceCompleted.GetFirstGapPos()>0 ? m_sourceCompleted.GetFirstGapPos()-1 : NOT_FOUND) , m_currTargetWordsRange(NOT_FOUND, NOT_FOUND) , m_wordDeleted(false) , m_totalScore(0.0f) , m_futureScore(0.0f) , m_ffStates(StatefulFeatureFunction::GetStatefulFeatureFunctions().size()) , m_arcList(NULL) , m_transOpt(initialTransOpt) , m_manager(manager) , m_id(m_manager.GetNextHypoId()) { // used for initial seeding of trans process // initialize scores //_hash_computed = false; //s_HypothesesCreated = 1; const vector& ffs = StatefulFeatureFunction::GetStatefulFeatureFunctions(); for (unsigned i = 0; i < ffs.size(); ++i) m_ffStates[i] = ffs[i]->EmptyHypothesisState(source); m_manager.GetSentenceStats().AddCreated(); } /*** * continue prevHypo by appending the phrases in transOpt */ Hypothesis:: Hypothesis(const Hypothesis &prevHypo, const TranslationOption &transOpt) : m_prevHypo(&prevHypo) , m_sourceCompleted(prevHypo.m_sourceCompleted ) , m_sourceInput(prevHypo.m_sourceInput) , m_currSourceWordsRange(transOpt.GetSourceWordsRange()) , m_currTargetWordsRange(prevHypo.m_currTargetWordsRange.GetEndPos() + 1, prevHypo.m_currTargetWordsRange.GetEndPos() + transOpt.GetTargetPhrase().GetSize()) , m_wordDeleted(false) , m_totalScore(0.0f) , m_futureScore(0.0f) , m_ffStates(prevHypo.m_ffStates.size()) , m_arcList(NULL) , m_transOpt(transOpt) , m_manager(prevHypo.GetManager()) , m_id(m_manager.GetNextHypoId()) { m_currScoreBreakdown.PlusEquals(transOpt.GetScoreBreakdown()); // assert that we are not extending our hypothesis by retranslating something // that this hypothesis has already translated! assert(!m_sourceCompleted.Overlap(m_currSourceWordsRange)); //_hash_computed = false; m_sourceCompleted.SetValue(m_currSourceWordsRange.GetStartPos(), m_currSourceWordsRange.GetEndPos(), true); m_wordDeleted = transOpt.IsDeletionOption(); m_manager.GetSentenceStats().AddCreated(); } Hypothesis:: ~Hypothesis() { for (unsigned i = 0; i < m_ffStates.size(); ++i) delete m_ffStates[i]; if (m_arcList) { ArcList::iterator iter; for (iter = m_arcList->begin() ; iter != m_arcList->end() ; ++iter) { FREEHYPO(*iter); } m_arcList->clear(); delete m_arcList; m_arcList = NULL; } } void Hypothesis:: AddArc(Hypothesis *loserHypo) { if (!m_arcList) { if (loserHypo->m_arcList) { // we don't have an arcList, but loser does this->m_arcList = loserHypo->m_arcList; // take ownership, we'll delete loserHypo->m_arcList = 0; // prevent a double deletion } else { this->m_arcList = new ArcList(); } } else { if (loserHypo->m_arcList) { // both have an arc list: merge. delete loser size_t my_size = m_arcList->size(); size_t add_size = loserHypo->m_arcList->size(); this->m_arcList->resize(my_size + add_size, 0); std::memcpy(&(*m_arcList)[0] + my_size, &(*loserHypo->m_arcList)[0], add_size * sizeof(Hypothesis *)); delete loserHypo->m_arcList; loserHypo->m_arcList = 0; } else { // loserHypo doesn't have any arcs // DO NOTHING } } m_arcList->push_back(loserHypo); } /*** * return the subclass of Hypothesis most appropriate to the given translation option */ Hypothesis* Hypothesis:: CreateNext(const TranslationOption &transOpt) const { return Create(*this, transOpt); } /*** * return the subclass of Hypothesis most appropriate to the given translation option */ Hypothesis* Hypothesis:: Create(const Hypothesis &prevHypo, const TranslationOption &transOpt) { #ifdef USE_HYPO_POOL Hypothesis *ptr = s_objectPool.getPtr(); return new(ptr) Hypothesis(prevHypo, transOpt); #else return new Hypothesis(prevHypo, transOpt); #endif } /*** * return the subclass of Hypothesis most appropriate to the given target phrase */ Hypothesis* Hypothesis:: Create(Manager& manager, InputType const& m_source, const TranslationOption &initialTransOpt) { #ifdef USE_HYPO_POOL Hypothesis *ptr = s_objectPool.getPtr(); return new(ptr) Hypothesis(manager, m_source, initialTransOpt); #else return new Hypothesis(manager, m_source, initialTransOpt); #endif } /** check, if two hypothesis can be recombined. this is actually a sorting function that allows us to keep an ordered list of hypotheses. This makes recombination much quicker. */ int Hypothesis:: RecombineCompare(const Hypothesis &compare) const { // -1 = this < compare // +1 = this > compare // 0 = this ==compare int comp = m_sourceCompleted.Compare(compare.m_sourceCompleted); if (comp != 0) return comp; for (unsigned i = 0; i < m_ffStates.size(); ++i) { if (m_ffStates[i] == NULL || compare.m_ffStates[i] == NULL) { comp = m_ffStates[i] - compare.m_ffStates[i]; } else { comp = m_ffStates[i]->Compare(*compare.m_ffStates[i]); } if (comp != 0) return comp; } return 0; } void Hypothesis:: EvaluateWhenApplied(StatefulFeatureFunction const& sfff, int state_idx) { const StaticData &staticData = StaticData::Instance(); if (! staticData.IsFeatureFunctionIgnored( sfff )) { Manager& manager = this->GetManager(); //Get the manager and the ttask ttasksptr const& ttask = manager.GetTtask(); m_ffStates[state_idx] = sfff.EvaluateWhenAppliedWithContext (ttask, *this, m_prevHypo ? m_prevHypo->m_ffStates[state_idx] : NULL, &m_currScoreBreakdown); } } void Hypothesis:: EvaluateWhenApplied(const StatelessFeatureFunction& slff) { const StaticData &staticData = StaticData::Instance(); if (! staticData.IsFeatureFunctionIgnored( slff )) { slff.EvaluateWhenApplied(*this, &m_currScoreBreakdown); } } /*** * calculate the logarithm of our total translation score (sum up components) */ void Hypothesis:: EvaluateWhenApplied(const SquareMatrix &futureScore) { IFVERBOSE(2) { m_manager.GetSentenceStats().StartTimeOtherScore(); } // some stateless score producers cache their values in the translation // option: add these here // language model scores for n-grams completely contained within a target // phrase are also included here // compute values of stateless feature functions that were not // cached in the translation option const vector& sfs = StatelessFeatureFunction::GetStatelessFeatureFunctions(); for (unsigned i = 0; i < sfs.size(); ++i) { const StatelessFeatureFunction &ff = *sfs[i]; EvaluateWhenApplied(ff); } const vector& ffs = StatefulFeatureFunction::GetStatefulFeatureFunctions(); for (unsigned i = 0; i < ffs.size(); ++i) { const StatefulFeatureFunction &ff = *ffs[i]; const StaticData &staticData = StaticData::Instance(); if (! staticData.IsFeatureFunctionIgnored(ff)) { m_ffStates[i] = ff.EvaluateWhenApplied(*this, m_prevHypo ? m_prevHypo->m_ffStates[i] : NULL, &m_currScoreBreakdown); } } IFVERBOSE(2) { m_manager.GetSentenceStats().StopTimeOtherScore(); m_manager.GetSentenceStats().StartTimeEstimateScore(); } // FUTURE COST m_futureScore = futureScore.CalcFutureScore( m_sourceCompleted ); // TOTAL m_totalScore = m_currScoreBreakdown.GetWeightedScore() + m_futureScore; if (m_prevHypo) m_totalScore += m_prevHypo->GetScore(); IFVERBOSE(2) { m_manager.GetSentenceStats().StopTimeEstimateScore(); } } const Hypothesis* Hypothesis::GetPrevHypo()const { return m_prevHypo; } /** * print hypothesis information for pharaoh-style logging */ void Hypothesis:: PrintHypothesis() const { if (!m_prevHypo) { TRACE_ERR(endl << "NULL hypo" << endl); return; } TRACE_ERR(endl << "creating hypothesis "<< m_id <<" from "<< m_prevHypo->m_id<<" ( "); int end = (int)(m_prevHypo->GetCurrTargetPhrase().GetSize()-1); int start = end-1; if ( start < 0 ) start = 0; if ( m_prevHypo->m_currTargetWordsRange.GetStartPos() == NOT_FOUND ) { TRACE_ERR( " "); } else { TRACE_ERR( "... "); } if (end>=0) { WordsRange range(start, end); TRACE_ERR( m_prevHypo->GetCurrTargetPhrase().GetSubString(range) << " "); } TRACE_ERR( ")"<m_totalScore - m_prevHypo->m_futureScore) < translation cost "<GetCurrSourceWordsRange())); // << " => distortion cost "<<(m_score[ScoreType::Distortion]*weightDistortion)<size() > nBestSize * 5) { // prune arc list only if there too many arcs NTH_ELEMENT4(m_arcList->begin(), m_arcList->begin() + nBestSize - 1, m_arcList->end(), CompareHypothesisTotalScore()); // delete bad ones ArcList::iterator iter; for (iter = m_arcList->begin() + nBestSize; iter != m_arcList->end() ; ++iter) FREEHYPO(*iter); m_arcList->erase(m_arcList->begin() + nBestSize, m_arcList->end()); } // set all arc's main hypo variable to this hypo ArcList::iterator iter = m_arcList->begin(); for (; iter != m_arcList->end() ; ++iter) { Hypothesis *arc = *iter; arc->SetWinningHypo(this); } } TargetPhrase const& Hypothesis:: GetCurrTargetPhrase() const { return m_transOpt.GetTargetPhrase(); } void Hypothesis:: GetOutputPhrase(Phrase &out) const { if (m_prevHypo != NULL) m_prevHypo->GetOutputPhrase(out); out.Append(GetCurrTargetPhrase()); } TO_STRING_BODY(Hypothesis) // friend ostream& operator<<(ostream& out, const Hypothesis& hypo) { hypo.ToStream(out); // words bitmap out << "[" << hypo.m_sourceCompleted << "] "; // scores out << " [total=" << hypo.GetTotalScore() << "]"; out << " " << hypo.GetScoreBreakdown(); // alignment out << " " << hypo.GetCurrTargetPhrase().GetAlignNonTerm(); return out; } std::string Hypothesis:: GetSourcePhraseStringRep(const vector factorsToPrint) const { return m_transOpt.GetInputPath().GetPhrase().GetStringRep(factorsToPrint); } std::string Hypothesis:: GetTargetPhraseStringRep(const vector factorsToPrint) const { return (m_prevHypo ? GetCurrTargetPhrase().GetStringRep(factorsToPrint) : ""); } std::string Hypothesis:: GetSourcePhraseStringRep() const { vector allFactors(MAX_NUM_FACTORS); for(size_t i=0; i < MAX_NUM_FACTORS; i++) allFactors[i] = i; return GetSourcePhraseStringRep(allFactors); } std::string Hypothesis:: GetTargetPhraseStringRep() const { vector allFactors(MAX_NUM_FACTORS); for(size_t i=0; i < MAX_NUM_FACTORS; i++) allFactors[i] = i; return GetTargetPhraseStringRep(allFactors); } void Hypothesis:: OutputAlignment(std::ostream &out) const { std::vector edges; const Hypothesis *currentHypo = this; while (currentHypo) { edges.push_back(currentHypo); currentHypo = currentHypo->GetPrevHypo(); } OutputAlignment(out, edges); } void Hypothesis:: OutputAlignment(ostream &out, const vector &edges) { size_t targetOffset = 0; for (int currEdge = (int)edges.size() - 1 ; currEdge >= 0 ; currEdge--) { const Hypothesis &edge = *edges[currEdge]; const TargetPhrase &tp = edge.GetCurrTargetPhrase(); size_t sourceOffset = edge.GetCurrSourceWordsRange().GetStartPos(); OutputAlignment(out, tp.GetAlignTerm(), sourceOffset, targetOffset); targetOffset += tp.GetSize(); } // Used by --print-alignment-info, so no endl } void Hypothesis:: OutputAlignment(ostream &out, const AlignmentInfo &ai, size_t sourceOffset, size_t targetOffset) { typedef std::vector< const std::pair* > AlignVec; AlignVec alignments = ai.GetSortedAlignments(); AlignVec::const_iterator it; for (it = alignments.begin(); it != alignments.end(); ++it) { const std::pair &alignment = **it; out << alignment.first + sourceOffset << "-" << alignment.second + targetOffset << " "; } } void Hypothesis:: OutputInput(std::vector& map, const Hypothesis* hypo) { if (!hypo->GetPrevHypo()) return; OutputInput(map, hypo->GetPrevHypo()); map[hypo->GetCurrSourceWordsRange().GetStartPos()] = &hypo->GetTranslationOption().GetInputPath().GetPhrase(); } void Hypothesis:: OutputInput(std::ostream& os) const { size_t len = this->GetInput().GetSize(); std::vector inp_phrases(len, 0); OutputInput(inp_phrases, this); for (size_t i=0; i &outputFactorOrder, char reportSegmentation, bool reportAllFactors) const { if (m_prevHypo) { // recursively retrace this best path through the lattice, starting from the end of the hypothesis sentence m_prevHypo->OutputBestSurface(out, outputFactorOrder, reportSegmentation, reportAllFactors); } OutputSurface(out, *this, outputFactorOrder, reportSegmentation, reportAllFactors); } ////////////////////////////////////////////////////////////////////////// /*** * print surface factor only for the given phrase */ void Hypothesis:: OutputSurface(std::ostream &out, const Hypothesis &edge, const std::vector &outputFactorOrder, char reportSegmentation, bool reportAllFactors) const { UTIL_THROW_IF2(outputFactorOrder.size() == 0, "Must specific at least 1 output factor"); const TargetPhrase& phrase = edge.GetCurrTargetPhrase(); bool markUnknown = StaticData::Instance().GetMarkUnknown(); if (reportAllFactors == true) { out << phrase; } else { FactorType placeholderFactor = StaticData::Instance().GetPlaceholderFactor(); std::map placeholders; if (placeholderFactor != NOT_FOUND) { // creates map of target position -> factor for placeholders placeholders = GetPlaceholders(edge, placeholderFactor); } size_t size = phrase.GetSize(); for (size_t pos = 0 ; pos < size ; pos++) { const Factor *factor = phrase.GetFactor(pos, outputFactorOrder[0]); if (placeholders.size()) { // do placeholders std::map::const_iterator iter = placeholders.find(pos); if (iter != placeholders.end()) { factor = iter->second; } } UTIL_THROW_IF2(factor == NULL, "No factor 0 at position " << pos); //preface surface form with UNK if marking unknowns const Word &word = phrase.GetWord(pos); if(markUnknown && word.IsOOV()) { out << "UNK" << *factor; } else { out << *factor; } for (size_t i = 1 ; i < outputFactorOrder.size() ; i++) { const Factor *factor = phrase.GetFactor(pos, outputFactorOrder[i]); UTIL_THROW_IF2(factor == NULL, "No factor " << i << " at position " << pos); out << "|" << *factor; } out << " "; } } // trace ("report segmentation") option "-t" / "-tt" if (reportSegmentation > 0 && phrase.GetSize() > 0) { const WordsRange &sourceRange = edge.GetCurrSourceWordsRange(); const int sourceStart = sourceRange.GetStartPos(); const int sourceEnd = sourceRange.GetEndPos(); out << "|" << sourceStart << "-" << sourceEnd; // enriched "-tt" if (reportSegmentation == 2) { out << ",wa="; const AlignmentInfo &ai = edge.GetCurrTargetPhrase().GetAlignTerm(); Hypothesis::OutputAlignment(out, ai, 0, 0); out << ",total="; out << edge.GetScore() - edge.GetPrevHypo()->GetScore(); out << ","; ScoreComponentCollection scoreBreakdown(edge.GetScoreBreakdown()); scoreBreakdown.MinusEquals(edge.GetPrevHypo()->GetScoreBreakdown()); scoreBreakdown.OutputAllFeatureScores(out); } out << "| "; } } std::map Hypothesis:: GetPlaceholders(const Hypothesis &hypo, FactorType placeholderFactor) const { const InputPath &inputPath = hypo.GetTranslationOption().GetInputPath(); const Phrase &inputPhrase = inputPath.GetPhrase(); std::map ret; for (size_t sourcePos = 0; sourcePos < inputPhrase.GetSize(); ++sourcePos) { const Factor *factor = inputPhrase.GetFactor(sourcePos, placeholderFactor); if (factor) { std::set targetPos = hypo.GetTranslationOption().GetTargetPhrase().GetAlignTerm().GetAlignmentsForSource(sourcePos); UTIL_THROW_IF2(targetPos.size() != 1, "Placeholder should be aligned to 1, and only 1, word"); ret[*targetPos.begin()] = factor; } } return ret; } #ifdef HAVE_XMLRPC_C void Hypothesis:: OutputLocalWordAlignment(vector& dest) const { using namespace std; WordsRange const& src = this->GetCurrSourceWordsRange(); WordsRange const& trg = this->GetCurrTargetWordsRange(); vector const* > a = this->GetCurrTargetPhrase().GetAlignTerm().GetSortedAlignments(); typedef pair item; map M; BOOST_FOREACH(item const* p, a) { M["source-word"] = xmlrpc_c::value_int(src.GetStartPos() + p->first); M["target-word"] = xmlrpc_c::value_int(trg.GetStartPos() + p->second); dest.push_back(xmlrpc_c::value_struct(M)); } } void Hypothesis:: OutputWordAlignment(vector& out) const { vector tmp; for (Hypothesis const* h = this; h; h = h->GetPrevHypo()) tmp.push_back(h); for (size_t i = tmp.size(); i-- > 0;) tmp[i]->OutputLocalWordAlignment(out); } #endif }