// -*- mode: c++; indent-tabs-mode: nil; tab-width:2 -*- /*********************************************************************** Moses - factored phrase-based language decoder Copyright (C) 2006 University of Edinburgh This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ***********************************************************************/ #ifndef moses_LanguageModelImplementation_h #define moses_LanguageModelImplementation_h #include #include #include "moses/Factor.h" #include "moses/TypeDef.h" #include "moses/Util.h" #include "moses/Word.h" #include "Base.h" #include namespace Moses { class FactorCollection; class Factor; class Phrase; //! to be returned from LM functions struct LMResult { // log probability float score; // Is the word unknown? bool unknown; }; //! Abstract base class which represent a language model on a contiguous phrase class LanguageModelImplementation : public LanguageModel { // default constructor is ok void ShiftOrPush(std::vector &contextFactor, const Word &word) const; protected: std::string m_filePath; size_t m_nGramOrder; //! max n-gram length contained in this LM Word m_sentenceStartWord, m_sentenceEndWord; //! Contains factors which represents the beging and end words for this LM. //! Usually and LanguageModelImplementation(const std::string &line); public: virtual ~LanguageModelImplementation() {} void SetParameter(const std::string& key, const std::string& value); /* get score of n-gram. n-gram should not be bigger than m_nGramOrder * Specific implementation can return State and len data to be used in hypothesis pruning * \param contextFactor n-gram to be scored * \param state LM state. Input and output. state must be initialized. If state isn't initialized, you want GetValueWithoutState. */ virtual LMResult GetValueGivenState(const std::vector &contextFactor, FFState &state) const; // Like GetValueGivenState but state may not be initialized (however it is non-NULL). // For example, state just came from NewState(NULL). virtual LMResult GetValueForgotState(const std::vector &contextFactor, FFState &outState) const = 0; //! get State for a particular n-gram. We don't care what the score is. // This is here so models can implement a shortcut to GetValueAndState. virtual void GetState(const std::vector &contextFactor, FFState &outState) const; virtual const FFState *GetNullContextState() const = 0; virtual const FFState *GetBeginSentenceState() const = 0; virtual FFState *NewState(const FFState *from = NULL) const = 0; virtual void CalcScore(const Phrase &phrase, float &fullScore, float &ngramScore, size_t &oovCount) const; FFState *EvaluateWhenApplied(const Hypothesis &hypo, const FFState *ps, ScoreComponentCollection *out) const; FFState* EvaluateWhenApplied(const ChartHypothesis& cur_hypo, int featureID, ScoreComponentCollection* accumulator) const; void updateChartScore(float *prefixScore, float *finalScore, float score, size_t wordPos) const; //! max n-gram order of LM size_t GetNGramOrder() const { return m_nGramOrder; } //! Contains factors which represents the beging and end words for this LM. Usually and const Word &GetSentenceStartWord() const { return m_sentenceStartWord; } const Word &GetSentenceEndWord() const { return m_sentenceEndWord; } const FFState* EmptyHypothesisState(const InputType &/*input*/) const { return NewState(GetBeginSentenceState()); } }; } #endif