#ifndef MERT_SCORER_H_ #define MERT_SCORER_H_ #include #include #include #include #include #include #include "Types.h" #include "ScoreData.h" namespace mert { class Vocabulary; } // namespace mert namespace MosesTuning { class PreProcessFilter; class ScoreStats; enum ScorerRegularisationStrategy {REG_NONE, REG_AVERAGE, REG_MINIMUM}; /** * Superclass of all scorers and dummy implementation. * * In order to add a new scorer it should be sufficient to override the members * prepareStats(), setReferenceFiles() and score() (or calculateScore()). */ class Scorer { public: Scorer(const std::string& name, const std::string& config); virtual ~Scorer(); /** * Return the number of statistics needed for the computation of the score. */ virtual std::size_t NumberOfScores() const = 0; /** * Set the reference files. This must be called before prepareStats(). */ virtual void setReferenceFiles(const std::vector& referenceFiles) { // do nothing } /** * Process the given guessed text, corresponding to the given reference sindex * and add the appropriate statistics to the entry. */ virtual void prepareStats(std::size_t sindex, const std::string& text, ScoreStats& entry) { // do nothing. } virtual void prepareStats(const std::string& sindex, const std::string& text, ScoreStats& entry) { this->prepareStats(static_cast(atoi(sindex.c_str())), text, entry); } /** * Score using each of the candidate index, then go through the diffs * applying each in turn, and calculating a new score each time. */ virtual void score(const candidates_t& candidates, const diffs_t& diffs, statscores_t& scores) const = 0; /* { //dummy impl if (!m_score_data) { throw runtime_error("score data not loaded"); } scores.push_back(0); for (std::size_t i = 0; i < diffs.size(); ++i) { scores.push_back(0); } } */ /** * Calculate the score of the sentences corresponding to the list of candidate * indices. Each index indicates the 1-best choice from the n-best list. */ float score(const candidates_t& candidates) const; const std::string& getName() const { return m_name; } std::size_t getReferenceSize() const { if (m_score_data) { return m_score_data->size(); } return 0; } /** * Set the score data, prior to scoring. */ virtual void setScoreData(ScoreData* data) { m_score_data = data; } /** * The scorer returns if it uses the reference alignment data * for permutation distance scores **/ virtual bool useAlignment() const { //cout << "Scorer::useAlignment returning false " << endl; return false; }; /** * Set the factors, which should be used for this metric */ virtual void setFactors(const std::string& factors); mert::Vocabulary* GetVocab() const { return m_vocab; } /** * Set unix filter, which will be used to preprocess the sentences */ virtual void setFilter(const std::string& filterCommand); private: void InitConfig(const std::string& config); /** * Take the factored sentence and return the desired factors */ std::string applyFactors(const std::string& sentece) const; /** * Preprocess the sentence with the filter (if given) */ std::string applyFilter(const std::string& sentence) const; std::string m_name; mert::Vocabulary* m_vocab; std::map m_config; std::vector m_factors; #if defined(__GLIBCXX__) || defined(__GLIBCPP__) PreProcessFilter* m_filter; #endif protected: ScoreData* m_score_data; bool m_enable_preserve_case; /** * Get value of config variable. If not provided, return default. */ std::string getConfig(const std::string& key, const std::string& def="") const { std::map::const_iterator i = m_config.find(key); if (i == m_config.end()) { return def; } else { return i->second; } } /** * Tokenise line and encode. * Note: We assume that all tokens are separated by whitespaces. */ void TokenizeAndEncode(const std::string& line, std::vector& encoded); /* * Tokenize functions for testing only. */ void TokenizeAndEncodeTesting(const std::string& line, std::vector& encoded); /** * Every inherited scorer should call this function for each sentence */ std::string preprocessSentence(const std::string& sentence) const { return applyFactors(applyFilter(sentence)); } }; namespace { //regularisation strategies inline float score_min(const statscores_t& scores, size_t start, size_t end) { float min = std::numeric_limits::max(); for (size_t i = start; i < end; ++i) { if (scores[i] < min) { min = scores[i]; } } return min; } inline float score_average(const statscores_t& scores, size_t start, size_t end) { if ((end - start) < 1) { // this shouldn't happen return 0; } float total = 0; for (size_t j = start; j < end; ++j) { total += scores[j]; } return total / (end - start); } } // namespace } #endif // MERT_SCORER_H_