/* * FeatureStats.cpp * mert - Minimum Error Rate Training * * Created by Nicola Bertoldi on 13/05/08. * */ #include "FeatureStats.h" #include #include #include "Util.h" using namespace std; namespace { const int kAvailableSize = 8; } // namespace SparseVector::name2id_t SparseVector::m_name_to_id; SparseVector::id2name_t SparseVector::m_id_to_name; FeatureStatsType SparseVector::get(const string& name) const { name2id_t::const_iterator name2id_iter = m_name_to_id.find(name); if (name2id_iter == m_name_to_id.end()) return 0; size_t id = name2id_iter->second; return get(id); } FeatureStatsType SparseVector::get(size_t id) const { fvector_t::const_iterator fvector_iter = m_fvector.find(id); if (fvector_iter == m_fvector.end()) return 0; return fvector_iter->second; } void SparseVector::set(const string& name, FeatureStatsType value) { name2id_t::const_iterator name2id_iter = m_name_to_id.find(name); size_t id = 0; if (name2id_iter == m_name_to_id.end()) { id = m_id_to_name.size(); m_id_to_name.push_back(name); m_name_to_id[name] = id; } else { id = name2id_iter->second; } m_fvector[id] = value; } void SparseVector::write(ostream& out, const string& sep) const { for (fvector_t::const_iterator i = m_fvector.begin(); i != m_fvector.end(); ++i) { if (abs(i->second) < 0.00001) continue; string name = m_id_to_name[i->first]; out << name << sep << i->second << " "; } } void SparseVector::clear() { m_fvector.clear(); } SparseVector& SparseVector::operator-=(const SparseVector& rhs) { //All the elements that have values in *this for (fvector_t::iterator i = m_fvector.begin(); i != m_fvector.end(); ++i) { m_fvector[i->first] = i->second - rhs.get(i->first); } //Any elements in rhs, that have no value in *this for (fvector_t::const_iterator i = rhs.m_fvector.begin(); i != rhs.m_fvector.end(); ++i) { if (m_fvector.find(i->first) == m_fvector.end()) { m_fvector[i->first] = -(i->second); } } return *this; } SparseVector operator-(const SparseVector& lhs, const SparseVector& rhs) { SparseVector res(lhs); res -= rhs; return res; } FeatureStats::FeatureStats() : m_available_size(kAvailableSize), m_entries(0), m_array(new FeatureStatsType[m_available_size]) {} FeatureStats::FeatureStats(const size_t size) : m_available_size(size), m_entries(size), m_array(new FeatureStatsType[m_available_size]) { memset(m_array, 0, GetArraySizeWithBytes()); } FeatureStats::FeatureStats(string &theString) : m_available_size(0), m_entries(0), m_array(NULL) { set(theString); } FeatureStats::~FeatureStats() { if (m_array) { delete [] m_array; m_array = NULL; } } void FeatureStats::Copy(const FeatureStats &stats) { m_available_size = stats.available(); m_entries = stats.size(); m_array = new FeatureStatsType[m_available_size]; memcpy(m_array, stats.getArray(), GetArraySizeWithBytes()); m_map = stats.getSparse(); } FeatureStats::FeatureStats(const FeatureStats &stats) { Copy(stats); } FeatureStats& FeatureStats::operator=(const FeatureStats &stats) { delete [] m_array; Copy(stats); return *this; } void FeatureStats::expand() { m_available_size *= 2; featstats_t t_ = new FeatureStatsType[m_available_size]; memcpy(t_, m_array, GetArraySizeWithBytes()); delete [] m_array; m_array = t_; } void FeatureStats::add(FeatureStatsType v) { if (isfull()) expand(); m_array[m_entries++]=v; } void FeatureStats::addSparse(const string& name, FeatureStatsType v) { m_map.set(name,v); } void FeatureStats::set(string &theString) { string substring, stringBuf; reset(); while (!theString.empty()) { getNextPound(theString, substring); // regular feature if (substring.find(":") == string::npos) { add(ConvertStringToFeatureStatsType(substring)); } // sparse feature else { size_t separator = substring.find_last_of(":"); addSparse(substring.substr(0,separator), atof(substring.substr(separator+1).c_str()) ); } } } void FeatureStats::loadbin(istream* is) { is->read(reinterpret_cast(m_array), static_cast(GetArraySizeWithBytes())); } void FeatureStats::loadtxt(istream* is) { string line; getline(*is, line); set(line); } void FeatureStats::loadtxt(const string &file) { ifstream ifs(file.c_str(), ios::in); if (!ifs) { cerr << "Failed to open " << file << endl; exit(1); } istream* is = &ifs; loadtxt(is); } void FeatureStats::savetxt(const string &file) { ofstream ofs(file.c_str(), ios::out); ostream* os = &ofs; savetxt(os); } void FeatureStats::savetxt(ostream* os) { *os << *this; } void FeatureStats::savetxt() { savetxt(&cout); } void FeatureStats::savebin(ostream* os) { os->write(reinterpret_cast(m_array), static_cast(GetArraySizeWithBytes())); } ostream& operator<<(ostream& o, const FeatureStats& e) { // print regular features for (size_t i=0; i< e.size(); i++) { o << e.get(i) << " "; } // sparse features e.getSparse().write(o,""); return o; } //ADEED_BY_TS bool operator==(const FeatureStats& f1, const FeatureStats& f2) { size_t size = f1.size(); if (size != f2.size()) return false; for (size_t k=0; k < size; k++) { if (f1.get(k) != f2.get(k)) return false; } return true; } //END_ADDED