/*********************************************************************** Moses - factored phrase-based language decoder Copyright (C) 2010 University of Edinburgh This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ***********************************************************************/ #include #include #include #include #include #include #include #include #ifdef MPI_ENABLE #include namespace mpi = boost::mpi; #endif #include "Main.h" #include "Optimiser.h" #include "Hildreth.h" #include "HypothesisQueue.h" #include "moses/FeatureVector.h" #include "moses/StaticData.h" #include "moses/ChartTrellisPathList.h" #include "moses/ChartTrellisPath.h" #include "moses/ScoreComponentCollection.h" #include "moses/ThreadPool.h" #include "moses/DummyScoreProducers.h" #include "moses/LexicalReordering.h" #include "moses/WordTranslationFeature.h" #include "moses/PhrasePairFeature.h" #include "mert/BleuScorer.h" using namespace Mira; using namespace std; using namespace Moses; namespace po = boost::program_options; int main(int argc, char** argv) { size_t rank = 0; size_t size = 1; #ifdef MPI_ENABLE mpi::environment env(argc,argv); mpi::communicator world; rank = world.rank(); size = world.size(); #endif bool help; int verbosity; string mosesConfigFile; string inputFile; vector referenceFiles; vector mosesConfigFilesFolds, inputFilesFolds, referenceFilesFolds; // string coreWeightFile, startWeightFile; size_t epochs; string learner; bool shuffle; size_t mixingFrequency; size_t weightDumpFrequency; string weightDumpStem; bool scale_margin, scale_margin_precision; bool scale_update, scale_update_precision; size_t n; size_t batchSize; bool distinctNbest; bool accumulateWeights; float historySmoothing; bool scaleByInputLength, scaleByAvgInputLength; bool scaleByInverseLength, scaleByAvgInverseLength; float scaleByX; float slack; bool averageWeights; bool weightConvergence; float learning_rate; float mira_learning_rate; float perceptron_learning_rate; string decoder_settings; float min_weight_change; bool normaliseWeights, normaliseMargin; bool print_feature_values; bool historyBleu ; bool sentenceBleu; bool perceptron_update; bool hope_fear; bool model_hope_fear; int hope_n, fear_n; size_t bleu_smoothing_scheme; float min_oracle_bleu; float minBleuRatio, maxBleuRatio; bool boost; bool decode_hope, decode_fear, decode_model; string decode_filename; bool batchEqualsShard; bool sparseAverage, dumpMixedWeights, sparseNoAverage; int featureCutoff; bool pruneZeroWeights; bool printFeatureCounts, printNbestWithFeatures; bool avgRefLength; bool print_weights, print_core_weights, debug_model, scale_lm, scale_wp; float scale_lm_factor, scale_wp_factor; bool kbest; string moses_src; float sigmoidParam; float bleuWeight, bleuWeight_hope, bleuWeight_fear; bool bleu_weight_lm, bleu_weight_lm_adjust; float bleu_weight_lm_factor; bool l1_regularize, l2_regularize, l1_reg_sparse, l2_reg_sparse; float l1_lambda, l2_lambda; bool most_violated, most_violated_reg, all_violated, max_bleu_diff, one_against_all; bool feature_confidence, signed_counts; float decay_core, decay_sparse, core_r0, sparse_r0; bool selective, summed; float bleu_weight_fear_factor; bool hildreth; float add2lm; bool realBleu, disableBleuFeature; bool rescaleSlack; bool makePairs; bool debug; bool reg_on_every_mix; size_t continue_epoch; bool modelPlusBleu, simpleHistoryBleu; po::options_description desc("Allowed options"); desc.add_options() ("continue-epoch", po::value(&continue_epoch)->default_value(0), "Continue an interrupted experiment from this epoch on") ("freq-reg", po::value(®_on_every_mix)->default_value(false), "Regularize after every weight mixing") ("l1sparse", po::value(&l1_reg_sparse)->default_value(true), "L1-regularization for sparse weights only") ("l2sparse", po::value(&l2_reg_sparse)->default_value(true), "L2-regularization for sparse weights only") ("mv-reg", po::value(&most_violated_reg)->default_value(false), "Regularize most violated constraint") ("dbg", po::value(&debug)->default_value(true), "More debug output") ("make-pairs", po::value(&makePairs)->default_value(true), "Make pairs of hypotheses for 1slack") ("debug", po::value(&debug)->default_value(true), "More debug output") ("rescale-slack", po::value(&rescaleSlack)->default_value(false), "Rescale slack in 1-slack formulation") ("disable-bleu-feature", po::value(&disableBleuFeature)->default_value(false), "Disable the Bleu feature") ("real-bleu", po::value(&realBleu)->default_value(false), "Compute real sentence Bleu on complete translations") ("add2lm", po::value(&add2lm)->default_value(0.0), "Add the specified amount to all LM weights") ("hildreth", po::value(&hildreth)->default_value(false), "Prefer Hildreth over analytical update") ("selective", po::value(&selective)->default_value(false), "Build constraints for every feature") ("summed", po::value(&summed)->default_value(false), "Sum up all constraints") ("model-plus-bleu", po::value(&modelPlusBleu)->default_value(false), "Use the sum of model score and +/- bleu to select hope and fear translations") ("simple-history-bleu", po::value(&simpleHistoryBleu)->default_value(false), "Simple history Bleu") ("bleu-weight", po::value(&bleuWeight)->default_value(1.0), "Bleu weight used in decoder objective") ("bw-hope", po::value(&bleuWeight_hope)->default_value(-1.0), "Bleu weight used in decoder objective for hope") ("bw-fear", po::value(&bleuWeight_fear)->default_value(-1.0), "Bleu weight used in decoder objective for fear") ("core-r0", po::value(&core_r0)->default_value(1.0), "Start learning rate for core features") ("sparse-r0", po::value(&sparse_r0)->default_value(1.0), "Start learning rate for sparse features") ("tie-bw-to-lm", po::value(&bleu_weight_lm)->default_value(false), "Make bleu weight depend on lm weight") ("adjust-bw", po::value(&bleu_weight_lm_adjust)->default_value(false), "Adjust bleu weight when lm weight changes") ("bw-lm-factor", po::value(&bleu_weight_lm_factor)->default_value(2.0), "Make bleu weight depend on lm weight by this factor") ("bw-factor-fear", po::value(&bleu_weight_fear_factor)->default_value(1.0), "Multiply fear weight by this factor") ("accumulate-weights", po::value(&accumulateWeights)->default_value(false), "Accumulate and average weights over all epochs") ("average-weights", po::value(&averageWeights)->default_value(false), "Set decoder weights to average weights after each update") ("avg-ref-length", po::value(&avgRefLength)->default_value(false), "Use average reference length instead of shortest for BLEU score feature") ("batch-equals-shard", po::value(&batchEqualsShard)->default_value(false), "Batch size is equal to shard size (purely batch)") ("batch-size,b", po::value(&batchSize)->default_value(1), "Size of batch that is send to optimiser for weight adjustments") ("bleu-smoothing-scheme", po::value(&bleu_smoothing_scheme)->default_value(1), "Set a smoothing scheme for sentence-Bleu: +1 (1), +0.1 (2), papineni (3) (default:1)") ("boost", po::value(&boost)->default_value(false), "Apply boosting factor to updates on misranked candidates") ("config,f", po::value(&mosesConfigFile), "Moses ini-file") ("configs-folds", po::value >(&mosesConfigFilesFolds), "Moses ini-files, one for each fold") ("debug-model", po::value(&debug_model)->default_value(false), "Get best model translation for debugging purposes") ("decode-hope", po::value(&decode_hope)->default_value(false), "Decode dev input set according to hope objective") ("decode-fear", po::value(&decode_fear)->default_value(false), "Decode dev input set according to fear objective") ("decode-model", po::value(&decode_model)->default_value(false), "Decode dev input set according to normal objective") ("decode-filename", po::value(&decode_filename), "Filename for Bleu objective translations") ("decoder-settings", po::value(&decoder_settings)->default_value(""), "Decoder settings for tuning runs") ("distinct-nbest", po::value(&distinctNbest)->default_value(true), "Use n-best list with distinct translations in inference step") ("dump-mixed-weights", po::value(&dumpMixedWeights)->default_value(false), "Dump mixed weights instead of averaged weights") ("epochs,e", po::value(&epochs)->default_value(10), "Number of epochs") ("feature-cutoff", po::value(&featureCutoff)->default_value(-1), "Feature cutoff as additional regularization for sparse features") ("fear-n", po::value(&fear_n)->default_value(1), "Number of fear translations used") ("help", po::value(&help)->zero_tokens()->default_value(false), "Print this help message and exit") ("history-bleu", po::value(&historyBleu)->default_value(false), "Use 1best translations to update the history") ("history-smoothing", po::value(&historySmoothing)->default_value(0.9), "Adjust the factor for history smoothing") ("hope-fear", po::value(&hope_fear)->default_value(true), "Use only hope and fear translations for optimisation (not model)") ("hope-n", po::value(&hope_n)->default_value(2), "Number of hope translations used") ("input-file,i", po::value(&inputFile), "Input file containing tokenised source") ("input-files-folds", po::value >(&inputFilesFolds), "Input files containing tokenised source, one for each fold") ("learner,l", po::value(&learner)->default_value("mira"), "Learning algorithm") ("l1-lambda", po::value(&l1_lambda)->default_value(0.0001), "Lambda for l1-regularization (w_i +/- lambda)") ("l2-lambda", po::value(&l2_lambda)->default_value(0.01), "Lambda for l2-regularization (w_i * (1 - lambda))") ("l1-reg", po::value(&l1_regularize)->default_value(false), "L1-regularization") ("l2-reg", po::value(&l2_regularize)->default_value(false), "L2-regularization") ("min-bleu-ratio", po::value(&minBleuRatio)->default_value(-1), "Set a minimum BLEU ratio between hope and fear") ("max-bleu-ratio", po::value(&maxBleuRatio)->default_value(-1), "Set a maximum BLEU ratio between hope and fear") ("max-bleu-diff", po::value(&max_bleu_diff)->default_value(true), "Select hope/fear with maximum Bleu difference") ("min-oracle-bleu", po::value(&min_oracle_bleu)->default_value(0), "Set a minimum oracle BLEU score") ("min-weight-change", po::value(&min_weight_change)->default_value(0.0001), "Set minimum weight change for stopping criterion") ("mira-learning-rate", po::value(&mira_learning_rate)->default_value(1), "Learning rate for MIRA (fixed or flexible)") ("mixing-frequency", po::value(&mixingFrequency)->default_value(1), "How often per epoch to mix weights, when using mpi") ("model-hope-fear", po::value(&model_hope_fear)->default_value(false), "Use model, hope and fear translations for optimisation") ("moses-src", po::value(&moses_src)->default_value(""), "Moses source directory") ("nbest,n", po::value(&n)->default_value(1), "Number of translations in n-best list") ("normalise-weights", po::value(&normaliseWeights)->default_value(false), "Whether to normalise the updated weights before passing them to the decoder") ("normalise-margin", po::value(&normaliseMargin)->default_value(false), "Normalise the margin: squash between 0 and 1") ("perceptron-learning-rate", po::value(&perceptron_learning_rate)->default_value(0.01), "Perceptron learning rate") ("print-feature-values", po::value(&print_feature_values)->default_value(false), "Print out feature values") ("print-feature-counts", po::value(&printFeatureCounts)->default_value(false), "Print out feature values, print feature list with hope counts after 1st epoch") ("print-nbest-with-features", po::value(&printNbestWithFeatures)->default_value(false), "Print out feature values, print feature list with hope counts after 1st epoch") ("print-weights", po::value(&print_weights)->default_value(false), "Print out current weights") ("print-core-weights", po::value(&print_core_weights)->default_value(true), "Print out current core weights") ("prune-zero-weights", po::value(&pruneZeroWeights)->default_value(false), "Prune zero-valued sparse feature weights") ("reference-files,r", po::value >(&referenceFiles), "Reference translation files for training") ("reference-files-folds", po::value >(&referenceFilesFolds), "Reference translation files for training, one for each fold") ("kbest", po::value(&kbest)->default_value(false), "Select hope/fear pairs from a list of nbest translations") ("scale-by-inverse-length", po::value(&scaleByInverseLength)->default_value(false), "Scale BLEU by (history of) inverse input length") ("scale-by-input-length", po::value(&scaleByInputLength)->default_value(false), "Scale BLEU by (history of) input length") ("scale-by-avg-input-length", po::value(&scaleByAvgInputLength)->default_value(false), "Scale BLEU by average input length") ("scale-by-avg-inverse-length", po::value(&scaleByAvgInverseLength)->default_value(false), "Scale BLEU by average inverse input length") ("scale-by-x", po::value(&scaleByX)->default_value(1), "Scale the BLEU score by value x") ("scale-lm", po::value(&scale_lm)->default_value(false), "Scale the language model feature") ("scale-factor-lm", po::value(&scale_lm_factor)->default_value(2), "Scale the language model feature by this factor") ("scale-wp", po::value(&scale_wp)->default_value(false), "Scale the word penalty feature") ("scale-factor-wp", po::value(&scale_wp_factor)->default_value(2), "Scale the word penalty feature by this factor") ("scale-margin", po::value(&scale_margin)->default_value(0), "Scale the margin by the Bleu score of the oracle translation") ("scale-margin-precision", po::value(&scale_margin_precision)->default_value(0), "Scale margin by precision of oracle") ("scale-update", po::value(&scale_update)->default_value(0), "Scale update by Bleu score of oracle") ("scale-update-precision", po::value(&scale_update_precision)->default_value(0), "Scale update by precision of oracle") ("sentence-level-bleu", po::value(&sentenceBleu)->default_value(true), "Use a sentences level Bleu scoring function") ("shuffle", po::value(&shuffle)->default_value(false), "Shuffle input sentences before processing") ("sigmoid-param", po::value(&sigmoidParam)->default_value(1), "y=sigmoidParam is the axis that this sigmoid approaches") ("slack", po::value(&slack)->default_value(0.01), "Use slack in optimiser") ("sparse-average", po::value(&sparseAverage)->default_value(false), "Average weights by the number of processes") ("sparse-no-average", po::value(&sparseNoAverage)->default_value(false), "Don't average sparse weights, just sum") ("stop-weights", po::value(&weightConvergence)->default_value(true), "Stop when weights converge") ("verbosity,v", po::value(&verbosity)->default_value(0), "Verbosity level") ("weight-dump-frequency", po::value(&weightDumpFrequency)->default_value(1), "How often per epoch to dump weights (mpi)") ("weight-dump-stem", po::value(&weightDumpStem)->default_value("weights"), "Stem of filename to use for dumping weights"); po::options_description cmdline_options; cmdline_options.add(desc); po::variables_map vm; po::store(po::command_line_parser(argc, argv). options(cmdline_options).run(), vm); po::notify(vm); if (help) { std::cout << "Usage: " + string(argv[0]) + " -f mosesini-file -i input-file -r reference-file(s) [options]" << std::endl; std::cout << desc << std::endl; return 0; } const StaticData &staticData = StaticData::Instance(); bool trainWithMultipleFolds = false; if (mosesConfigFilesFolds.size() > 0 || inputFilesFolds.size() > 0 || referenceFilesFolds.size() > 0) { if (rank == 0) cerr << "Training with " << mosesConfigFilesFolds.size() << " folds" << endl; trainWithMultipleFolds = true; } if (dumpMixedWeights && (mixingFrequency != weightDumpFrequency)) { cerr << "Set mixing frequency = weight dump frequency for dumping mixed weights!" << endl; exit(1); } if ((sparseAverage || sparseNoAverage) && averageWeights) { cerr << "Parameters --sparse-average 1/--sparse-no-average 1 and --average-weights 1 are incompatible (not implemented)" << endl; exit(1); } if (trainWithMultipleFolds) { if (!mosesConfigFilesFolds.size()) { cerr << "Error: No moses ini files specified for training with folds" << endl; exit(1); } if (!inputFilesFolds.size()) { cerr << "Error: No input files specified for training with folds" << endl; exit(1); } if (!referenceFilesFolds.size()) { cerr << "Error: No reference files specified for training with folds" << endl; exit(1); } } else { if (mosesConfigFile.empty()) { cerr << "Error: No moses ini file specified" << endl; return 1; } if (inputFile.empty()) { cerr << "Error: No input file specified" << endl; return 1; } if (!referenceFiles.size()) { cerr << "Error: No reference files specified" << endl; return 1; } } // load input and references vector inputSentences; size_t inputSize = trainWithMultipleFolds? inputFilesFolds.size(): 0; size_t refSize = trainWithMultipleFolds? referenceFilesFolds.size(): referenceFiles.size(); vector > inputSentencesFolds(inputSize); vector > referenceSentences(refSize); // number of cores for each fold size_t coresPerFold = 0, myFold = 0; if (trainWithMultipleFolds) { if (mosesConfigFilesFolds.size() > size) { cerr << "Number of cores has to be a multiple of the number of folds" << endl; exit(1); } coresPerFold = size/mosesConfigFilesFolds.size(); if (size % coresPerFold > 0) { cerr << "Number of cores has to be a multiple of the number of folds" << endl; exit(1); } if (rank == 0) cerr << "Number of cores per fold: " << coresPerFold << endl; myFold = rank/coresPerFold; cerr << "Rank " << rank << ", my fold: " << myFold << endl; } // NOTE: we do not actually need the references here, because we are reading them in from StaticData if (trainWithMultipleFolds) { if (!loadSentences(inputFilesFolds[myFold], inputSentencesFolds[myFold])) { cerr << "Error: Failed to load input sentences from " << inputFilesFolds[myFold] << endl; exit(1); } VERBOSE(1, "Rank " << rank << " reading inputs from " << inputFilesFolds[myFold] << endl); if (!loadSentences(referenceFilesFolds[myFold], referenceSentences[myFold])) { cerr << "Error: Failed to load reference sentences from " << referenceFilesFolds[myFold] << endl; exit(1); } if (referenceSentences[myFold].size() != inputSentencesFolds[myFold].size()) { cerr << "Error: Input file length (" << inputSentencesFolds[myFold].size() << ") != (" << referenceSentences[myFold].size() << ") reference file length (rank " << rank << ")" << endl; exit(1); } VERBOSE(1, "Rank " << rank << " reading references from " << referenceFilesFolds[myFold] << endl); } else { if (!loadSentences(inputFile, inputSentences)) { cerr << "Error: Failed to load input sentences from " << inputFile << endl; return 1; } for (size_t i = 0; i < referenceFiles.size(); ++i) { if (!loadSentences(referenceFiles[i], referenceSentences[i])) { cerr << "Error: Failed to load reference sentences from " << referenceFiles[i] << endl; return 1; } if (referenceSentences[i].size() != inputSentences.size()) { cerr << "Error: Input file length (" << inputSentences.size() << ") != (" << referenceSentences[i].size() << ") length of reference file " << i << endl; return 1; } } } if (scaleByAvgInputLength || scaleByInverseLength || scaleByAvgInverseLength) scaleByInputLength = false; if (historyBleu || simpleHistoryBleu) { sentenceBleu = false; cerr << "Using history Bleu. " << endl; } if (kbest) { realBleu = true; disableBleuFeature = true; cerr << "Use kbest lists and real Bleu scores, disable Bleu feature.." << endl; } // initialise Moses // add references to initialize Bleu feature boost::trim(decoder_settings); decoder_settings += " -mira -distinct-nbest -references"; if (trainWithMultipleFolds) { decoder_settings += " "; decoder_settings += referenceFilesFolds[myFold]; } else { for (size_t i=0; i < referenceFiles.size(); ++i) { decoder_settings += " "; decoder_settings += referenceFiles[i]; } } vector decoder_params; boost::split(decoder_params, decoder_settings, boost::is_any_of("\t ")); string configFile = trainWithMultipleFolds? mosesConfigFilesFolds[myFold] : mosesConfigFile; VERBOSE(1, "Rank " << rank << " reading config file from " << configFile << endl); MosesDecoder* decoder = new MosesDecoder(configFile, verbosity, decoder_params.size(), decoder_params); decoder->setBleuParameters(disableBleuFeature, sentenceBleu, scaleByInputLength, scaleByAvgInputLength, scaleByInverseLength, scaleByAvgInverseLength, scaleByX, historySmoothing, bleu_smoothing_scheme, simpleHistoryBleu); SearchAlgorithm searchAlgorithm = staticData.GetSearchAlgorithm(); bool chartDecoding = (searchAlgorithm == ChartDecoding); // Optionally shuffle the sentences vector order; if (trainWithMultipleFolds) { for (size_t i = 0; i < inputSentencesFolds[myFold].size(); ++i) { order.push_back(i); } } else { if (rank == 0) { for (size_t i = 0; i < inputSentences.size(); ++i) { order.push_back(i); } } } // initialise optimizer Optimiser* optimiser = NULL; if (learner == "mira") { if (rank == 0) { cerr << "Optimising using Mira" << endl; cerr << "slack: " << slack << ", learning rate: " << mira_learning_rate << endl; cerr << "selective: " << selective << endl; if (normaliseMargin) cerr << "sigmoid parameter: " << sigmoidParam << endl; } optimiser = new MiraOptimiser(slack, scale_margin, scale_margin_precision, scale_update, scale_update_precision, boost, normaliseMargin, sigmoidParam); learning_rate = mira_learning_rate; perceptron_update = false; } else if (learner == "perceptron") { if (rank == 0) { cerr << "Optimising using Perceptron" << endl; } optimiser = new Perceptron(); learning_rate = perceptron_learning_rate; perceptron_update = true; model_hope_fear = false; // mira only hope_fear = false; // mira only n = 1; hope_n = 1; fear_n = 1; } else { cerr << "Error: Unknown optimiser: " << learner << endl; return 1; } // resolve parameter dependencies if (batchSize > 1 && perceptron_update) { batchSize = 1; cerr << "Info: Setting batch size to 1 for perceptron update" << endl; } if (hope_n == -1) hope_n = n; if (fear_n == -1) fear_n = n; if (model_hope_fear || kbest) hope_fear = false; // is true by default if (learner == "mira" && !(hope_fear || model_hope_fear || kbest)) { cerr << "Error: Need to select one of parameters --hope-fear/--model-hope-fear/--kbest for mira update." << endl; return 1; } #ifdef MPI_ENABLE if (!trainWithMultipleFolds) mpi::broadcast(world, order, 0); #endif // Create shards according to the number of processes used vector shard; if (trainWithMultipleFolds) { size_t shardSize = order.size()/coresPerFold; size_t shardStart = (size_t) (shardSize * (rank % coresPerFold)); size_t shardEnd = shardStart + shardSize; if (rank % coresPerFold == coresPerFold - 1) { // last rank of each fold shardEnd = order.size(); shardSize = shardEnd - shardStart; } VERBOSE(1, "Rank: " << rank << ", shard size: " << shardSize << endl); VERBOSE(1, "Rank: " << rank << ", shard start: " << shardStart << " shard end: " << shardEnd << endl); shard.resize(shardSize); copy(order.begin() + shardStart, order.begin() + shardEnd, shard.begin()); batchSize = 1; } else { size_t shardSize = order.size() / size; size_t shardStart = (size_t) (shardSize * rank); size_t shardEnd = (size_t) (shardSize * (rank + 1)); if (rank == size - 1) { shardEnd = order.size(); shardSize = shardEnd - shardStart; } VERBOSE(1, "Rank: " << rank << " Shard size: " << shardSize << endl); VERBOSE(1, "Rank: " << rank << " Shard start: " << shardStart << " Shard end: " << shardEnd << endl); shard.resize(shardSize); copy(order.begin() + shardStart, order.begin() + shardEnd, shard.begin()); if (batchEqualsShard) batchSize = shardSize; } // get reference to feature functions const vector &featureFunctions = FeatureFunction::GetFeatureFunctions(); ScoreComponentCollection initialWeights = decoder->getWeights(); bool tuneMetaFeature = false; const vector& sparseProducers = staticData.GetSparseProducers(); for (unsigned i = 0; i < sparseProducers.size(); ++i) { float spWeight = sparseProducers[i]->GetSparseProducerWeight(); if (spWeight != 1.0) { tuneMetaFeature = true; cerr << "Rank " << rank << ", sparse Producer " << sparseProducers[i]->GetScoreProducerDescription() << " weight: " << spWeight << endl; } } if (add2lm != 0) { const LMList& lmList_new = staticData.GetLMList(); for (LMList::const_iterator i = lmList_new.begin(); i != lmList_new.end(); ++i) { float lmWeight = initialWeights.GetScoreForProducer(*i) + add2lm; initialWeights.Assign(*i, lmWeight); cerr << "Rank " << rank << ", add " << add2lm << " to lm weight." << endl; } } if (normaliseWeights) { initialWeights.L1Normalise(); cerr << "Rank " << rank << ", normalised initial weights: " << initialWeights << endl; } decoder->setWeights(initialWeights); // set bleu weight to twice the size of the language model weight(s) const LMList& lmList = staticData.GetLMList(); if (bleu_weight_lm) { float lmSum = 0; for (LMList::const_iterator i = lmList.begin(); i != lmList.end(); ++i) lmSum += abs(initialWeights.GetScoreForProducer(*i)); bleuWeight = lmSum * bleu_weight_lm_factor; cerr << "Set bleu weight to lm weight * " << bleu_weight_lm_factor << endl; } if (bleuWeight_hope == -1) { bleuWeight_hope = bleuWeight; } if (bleuWeight_fear == -1) { bleuWeight_fear = bleuWeight; } bleuWeight_fear *= bleu_weight_fear_factor; cerr << "Bleu weight: " << bleuWeight << endl; cerr << "Bleu weight fear: " << bleuWeight_fear << endl; if (decode_hope || decode_fear || decode_model) { size_t decode = 1; if (decode_fear) decode = 2; if (decode_model) decode = 3; decodeHopeOrFear(rank, size, decode, decode_filename, inputSentences, decoder, n, bleuWeight); } //Main loop: ScoreComponentCollection cumulativeWeights; // collect weights per epoch to produce an average ScoreComponentCollection cumulativeWeightsBinary; size_t numberOfUpdates = 0; size_t numberOfUpdatesThisEpoch = 0; time_t now; time(&now); cerr << "Rank " << rank << ", " << ctime(&now); float avgInputLength = 0; float sumOfInputs = 0; size_t numberOfInputs = 0; ScoreComponentCollection mixedWeights; ScoreComponentCollection mixedWeightsPrevious; ScoreComponentCollection mixedWeightsBeforePrevious; ScoreComponentCollection mixedAverageWeights; ScoreComponentCollection mixedAverageWeightsPrevious; ScoreComponentCollection mixedAverageWeightsBeforePrevious; bool stop = false; // int sumStillViolatedConstraints; float epsilon = 0.0001; // Variables for feature confidence ScoreComponentCollection confidenceCounts, mixedConfidenceCounts, featureLearningRates; featureLearningRates.UpdateLearningRates(decay_core, decay_sparse, confidenceCounts, core_r0, sparse_r0); //initialise core learning rates cerr << "Initial learning rates, core: " << core_r0 << ", sparse: " << sparse_r0 << endl; for (size_t epoch = continue_epoch; epoch < epochs && !stop; ++epoch) { if (shuffle) { if (trainWithMultipleFolds || rank == 0) { cerr << "Rank " << rank << ", epoch " << epoch << ", shuffling input sentences.." << endl; RandomIndex rindex; random_shuffle(order.begin(), order.end(), rindex); } #ifdef MPI_ENABLE if (!trainWithMultipleFolds) mpi::broadcast(world, order, 0); #endif // redo shards if (trainWithMultipleFolds) { size_t shardSize = order.size()/coresPerFold; size_t shardStart = (size_t) (shardSize * (rank % coresPerFold)); size_t shardEnd = shardStart + shardSize; if (rank % coresPerFold == coresPerFold - 1) { // last rank of each fold shardEnd = order.size(); shardSize = shardEnd - shardStart; } VERBOSE(1, "Rank: " << rank << ", shard size: " << shardSize << endl); VERBOSE(1, "Rank: " << rank << ", shard start: " << shardStart << " shard end: " << shardEnd << endl); shard.resize(shardSize); copy(order.begin() + shardStart, order.begin() + shardEnd, shard.begin()); batchSize = 1; } else { size_t shardSize = order.size()/size; size_t shardStart = (size_t) (shardSize * rank); size_t shardEnd = (size_t) (shardSize * (rank + 1)); if (rank == size - 1) { shardEnd = order.size(); shardSize = shardEnd - shardStart; } VERBOSE(1, "Shard size: " << shardSize << endl); VERBOSE(1, "Rank: " << rank << " Shard start: " << shardStart << " Shard end: " << shardEnd << endl); shard.resize(shardSize); copy(order.begin() + shardStart, order.begin() + shardEnd, shard.begin()); if (batchEqualsShard) batchSize = shardSize; } } // sum of violated constraints in an epoch // sumStillViolatedConstraints = 0; numberOfUpdatesThisEpoch = 0; // Sum up weights over one epoch, final average uses weights from last epoch if (!accumulateWeights) { cumulativeWeights.ZeroAll(); cumulativeWeightsBinary.ZeroAll(); } // number of weight dumps this epoch size_t weightMixingThisEpoch = 0; size_t weightEpochDump = 0; size_t shardPosition = 0; vector::const_iterator sid = shard.begin(); while (sid != shard.end()) { // feature values for hypotheses i,j (matrix: batchSize x 3*n x featureValues) vector > featureValues; vector > bleuScores; vector > modelScores; // variables for hope-fear/perceptron setting vector > featureValuesHope; vector > featureValuesFear; vector > bleuScoresHope; vector > bleuScoresFear; vector > modelScoresHope; vector > modelScoresFear; // get moses weights ScoreComponentCollection mosesWeights = decoder->getWeights(); VERBOSE(1, "\nRank " << rank << ", epoch " << epoch << ", weights: " << mosesWeights << endl); if (historyBleu || simpleHistoryBleu) { decoder->printBleuFeatureHistory(cerr); } if (tuneMetaFeature) { // initialise meta feature MetaFeatureProducer *m = staticData.GetMetaFeatureProducer(); FeatureFunction* ff = const_cast(sparseProducers[0]); if (sparseProducers[0]->GetScoreProducerDescription().compare("wt") == 0) { WordTranslationFeature* wt = static_cast(ff); mosesWeights.Assign(m, wt->GetSparseProducerWeight()); } else if (sparseProducers[0]->GetScoreProducerDescription().compare("pp") == 0) { PhrasePairFeature* pp = static_cast(ff); mosesWeights.Assign(m, pp->GetSparseProducerWeight()); } } // BATCHING: produce nbest lists for all input sentences in batch vector oracleBleuScores; vector oracleModelScores; vector > oneBests; vector oracleFeatureValues; vector inputLengths; vector ref_ids; size_t actualBatchSize = 0; vector::const_iterator current_sid_start = sid; size_t examples_in_batch = 0; bool skip_example = false; for (size_t batchPosition = 0; batchPosition < batchSize && sid != shard.end(); ++batchPosition) { string input; if (trainWithMultipleFolds) input = inputSentencesFolds[myFold][*sid]; else input = inputSentences[*sid]; Moses::Sentence *sentence = new Sentence(); stringstream in(input + "\n"); const vector inputFactorOrder = staticData.GetInputFactorOrder(); sentence->Read(in,inputFactorOrder); cerr << "\nRank " << rank << ", epoch " << epoch << ", input sentence " << *sid << ": \""; sentence->Print(cerr); cerr << "\"" << " (batch pos " << batchPosition << ")" << endl; size_t current_input_length = (*sentence).GetSize(); if (epoch == 0 && (scaleByAvgInputLength || scaleByAvgInverseLength)) { sumOfInputs += current_input_length; ++numberOfInputs; avgInputLength = sumOfInputs/numberOfInputs; decoder->setAvgInputLength(avgInputLength); cerr << "Rank " << rank << ", epoch 0, average input length: " << avgInputLength << endl; } vector newFeatureValues; vector newScores; if (model_hope_fear) { featureValues.push_back(newFeatureValues); bleuScores.push_back(newScores); modelScores.push_back(newScores); } if (hope_fear || perceptron_update) { featureValuesHope.push_back(newFeatureValues); featureValuesFear.push_back(newFeatureValues); bleuScoresHope.push_back(newScores); bleuScoresFear.push_back(newScores); modelScoresHope.push_back(newScores); modelScoresFear.push_back(newScores); if (historyBleu || simpleHistoryBleu || debug_model) { featureValues.push_back(newFeatureValues); bleuScores.push_back(newScores); modelScores.push_back(newScores); } } if (kbest) { // for decoding featureValues.push_back(newFeatureValues); bleuScores.push_back(newScores); modelScores.push_back(newScores); // for storing selected examples featureValuesHope.push_back(newFeatureValues); featureValuesFear.push_back(newFeatureValues); bleuScoresHope.push_back(newScores); bleuScoresFear.push_back(newScores); modelScoresHope.push_back(newScores); modelScoresFear.push_back(newScores); } size_t ref_length; float avg_ref_length; if (print_weights) cerr << "Rank " << rank << ", epoch " << epoch << ", current weights: " << mosesWeights << endl; if (print_core_weights) { cerr << "Rank " << rank << ", epoch " << epoch << ", current weights: "; mosesWeights.PrintCoreFeatures(); cerr << endl; } // check LM weight const LMList& lmList_new = staticData.GetLMList(); for (LMList::const_iterator i = lmList_new.begin(); i != lmList_new.end(); ++i) { float lmWeight = mosesWeights.GetScoreForProducer(*i); cerr << "Rank " << rank << ", epoch " << epoch << ", lm weight: " << lmWeight << endl; if (lmWeight <= 0) { cerr << "Rank " << rank << ", epoch " << epoch << ", ERROR: language model weight should never be <= 0." << endl; mosesWeights.Assign(*i, 0.1); cerr << "Rank " << rank << ", epoch " << epoch << ", assign lm weights of 0.1" << endl; } } // select inference scheme cerr << "Rank " << rank << ", epoch " << epoch << ", real Bleu? " << realBleu << endl; if (hope_fear || perceptron_update) { // HOPE cerr << "Rank " << rank << ", epoch " << epoch << ", " << hope_n << "best hope translations" << endl; vector< vector > outputHope = decoder->getNBest(input, *sid, hope_n, 1.0, bleuWeight_hope, featureValuesHope[batchPosition], bleuScoresHope[batchPosition], modelScoresHope[batchPosition], 1, realBleu, distinctNbest, avgRefLength, rank, epoch, ""); vector oracle = outputHope[0]; decoder->cleanup(chartDecoding); ref_length = decoder->getClosestReferenceLength(*sid, oracle.size()); avg_ref_length = ref_length; float hope_length_ratio = (float)oracle.size()/ref_length; int oracleSize = (int)oracle.size(); cerr << endl; // count sparse features occurring in hope translation featureValuesHope[batchPosition][0].IncrementSparseHopeFeatures(); float precision = bleuScoresHope[batchPosition][0]; if (historyBleu || simpleHistoryBleu) { precision /= decoder->getTargetLengthHistory(); } else { if (scaleByAvgInputLength) precision /= decoder->getAverageInputLength(); else if (scaleByAvgInverseLength) precision /= (100/decoder->getAverageInputLength()); precision /= scaleByX; } if (scale_margin_precision || scale_update_precision) { if (historyBleu || simpleHistoryBleu || scaleByAvgInputLength || scaleByAvgInverseLength) { cerr << "Rank " << rank << ", epoch " << epoch << ", set hope precision: " << precision << endl; ((MiraOptimiser*) optimiser)->setPrecision(precision); } } vector bestModel; if (debug_model || historyBleu || simpleHistoryBleu) { // MODEL (for updating the history only, using dummy vectors) cerr << "Rank " << rank << ", epoch " << epoch << ", 1best wrt model score (debug or history)" << endl; vector< vector > outputModel = decoder->getNBest(input, *sid, n, 0.0, bleuWeight, featureValues[batchPosition], bleuScores[batchPosition], modelScores[batchPosition], 1, realBleu, distinctNbest, avgRefLength, rank, epoch, ""); bestModel = outputModel[0]; decoder->cleanup(chartDecoding); cerr << endl; ref_length = decoder->getClosestReferenceLength(*sid, bestModel.size()); } // FEAR float fear_length_ratio = 0; float bleuRatioHopeFear = 0; int fearSize = 0; cerr << "Rank " << rank << ", epoch " << epoch << ", " << fear_n << "best fear translations" << endl; vector< vector > outputFear = decoder->getNBest(input, *sid, fear_n, -1.0, bleuWeight_fear, featureValuesFear[batchPosition], bleuScoresFear[batchPosition], modelScoresFear[batchPosition], 1, realBleu, distinctNbest, avgRefLength, rank, epoch, ""); vector fear = outputFear[0]; decoder->cleanup(chartDecoding); ref_length = decoder->getClosestReferenceLength(*sid, fear.size()); avg_ref_length += ref_length; avg_ref_length /= 2; fear_length_ratio = (float)fear.size()/ref_length; fearSize = (int)fear.size(); cerr << endl; for (size_t i = 0; i < fear.size(); ++i) delete fear[i]; // count sparse features occurring in fear translation featureValuesFear[batchPosition][0].IncrementSparseFearFeatures(); // Bleu-related example selection bool skip = false; bleuRatioHopeFear = bleuScoresHope[batchPosition][0] / bleuScoresFear[batchPosition][0]; if (minBleuRatio != -1 && bleuRatioHopeFear < minBleuRatio) skip = true; if(maxBleuRatio != -1 && bleuRatioHopeFear > maxBleuRatio) skip = true; // sanity check if (historyBleu || simpleHistoryBleu) { if (bleuScores[batchPosition][0] > bleuScoresHope[batchPosition][0] && modelScores[batchPosition][0] > modelScoresHope[batchPosition][0]) { if (abs(bleuScores[batchPosition][0] - bleuScoresHope[batchPosition][0]) > epsilon && abs(modelScores[batchPosition][0] - modelScoresHope[batchPosition][0]) > epsilon) { cerr << "Rank " << rank << ", epoch " << epoch << ", ERROR: MODEL translation better than HOPE translation." << endl; skip = true; } } if (bleuScoresFear[batchPosition][0] > bleuScores[batchPosition][0] && modelScoresFear[batchPosition][0] > modelScores[batchPosition][0]) { if (abs(bleuScoresFear[batchPosition][0] - bleuScores[batchPosition][0]) > epsilon && abs(modelScoresFear[batchPosition][0] - modelScores[batchPosition][0]) > epsilon) { cerr << "Rank " << rank << ", epoch " << epoch << ", ERROR: FEAR translation better than MODEL translation." << endl; skip = true; } } } if (bleuScoresFear[batchPosition][0] > bleuScoresHope[batchPosition][0]) { if (abs(bleuScoresFear[batchPosition][0] - bleuScoresHope[batchPosition][0]) > epsilon) { // check if it's an error or a warning skip = true; if (modelScoresFear[batchPosition][0] > modelScoresHope[batchPosition][0] && abs(modelScoresFear[batchPosition][0] - modelScoresHope[batchPosition][0]) > epsilon) { cerr << "Rank " << rank << ", epoch " << epoch << ", ERROR: FEAR translation better than HOPE translation. (abs-diff: " << abs(bleuScoresFear[batchPosition][0] - bleuScoresHope[batchPosition][0]) << ")" <getNBest(input, *sid, n, 1.0, bleuWeight_hope, featureValues[batchPosition], bleuScores[batchPosition], modelScores[batchPosition], 0, realBleu, distinctNbest, avgRefLength, rank, epoch, ""); //vector oracle = outputHope[0]; // needed for history inputLengths.push_back(current_input_length); ref_ids.push_back(*sid); decoder->cleanup(chartDecoding); //ref_length = decoder->getClosestReferenceLength(*sid, oracle.size()); //float hope_length_ratio = (float)oracle.size()/ref_length; cerr << endl; oracleFeatureValues.push_back(featureValues[batchPosition][oraclePos]); oracleBleuScores.push_back(bleuScores[batchPosition][oraclePos]); oracleModelScores.push_back(modelScores[batchPosition][oraclePos]); // MODEL cerr << "Rank " << rank << ", epoch " << epoch << ", " << n << "best wrt model score" << endl; if (historyBleu || simpleHistoryBleu) { vector< vector > outputModel = decoder->getNBest(input, *sid, n, 0.0, bleuWeight, featureValues[batchPosition], bleuScores[batchPosition], modelScores[batchPosition], 1, realBleu, distinctNbest, avgRefLength, rank, epoch, ""); vector bestModel = outputModel[0]; oneBests.push_back(bestModel); inputLengths.push_back(current_input_length); ref_ids.push_back(*sid); } else { decoder->getNBest(input, *sid, n, 0.0, bleuWeight, featureValues[batchPosition], bleuScores[batchPosition], modelScores[batchPosition], 0, realBleu, distinctNbest, avgRefLength, rank, epoch, ""); } decoder->cleanup(chartDecoding); //ref_length = decoder->getClosestReferenceLength(*sid, bestModel.size()); //float model_length_ratio = (float)bestModel.size()/ref_length; cerr << endl; // FEAR cerr << "Rank " << rank << ", epoch " << epoch << ", " << n << "best fear translations" << endl; decoder->getNBest(input, *sid, n, -1.0, bleuWeight_fear, featureValues[batchPosition], bleuScores[batchPosition], modelScores[batchPosition], 0, realBleu, distinctNbest, avgRefLength, rank, epoch, ""); decoder->cleanup(chartDecoding); //ref_length = decoder->getClosestReferenceLength(*sid, fear.size()); //float fear_length_ratio = (float)fear.size()/ref_length; examples_in_batch++; } if (kbest) { // MODEL cerr << "Rank " << rank << ", epoch " << epoch << ", " << n << "best wrt model score" << endl; if (historyBleu || simpleHistoryBleu) { vector< vector > outputModel = decoder->getNBest(input, *sid, n, 0.0, bleuWeight, featureValues[batchPosition], bleuScores[batchPosition], modelScores[batchPosition], 1, realBleu, distinctNbest, avgRefLength, rank, epoch, ""); vector bestModel = outputModel[0]; oneBests.push_back(bestModel); inputLengths.push_back(current_input_length); ref_ids.push_back(*sid); } else { decoder->getNBest(input, *sid, n, 0.0, bleuWeight, featureValues[batchPosition], bleuScores[batchPosition], modelScores[batchPosition], 0, realBleu, distinctNbest, avgRefLength, rank, epoch, ""); } decoder->cleanup(chartDecoding); //ref_length = decoder->getClosestReferenceLength(*sid, bestModel.size()); //float model_length_ratio = (float)bestModel.size()/ref_length; cerr << endl; examples_in_batch++; HypothesisQueue queueHope(hope_n); HypothesisQueue queueFear(fear_n); cerr << endl; if (most_violated || all_violated || one_against_all) { float bleuHope = -1000; float bleuFear = 1000; size_t indexHope = -1; size_t indexFear = -1; vector bleuHopeList; vector bleuFearList; vector indexHopeList; vector indexFearList; if (most_violated) cerr << "Rank " << rank << ", epoch " << epoch << ", pick pair with most violated constraint" << endl; else if (all_violated) cerr << "Rank " << rank << ", epoch " << epoch << ", pick all pairs with violated constraints"; else cerr << "Rank " << rank << ", epoch " << epoch << ", pick all pairs with hope"; // find best hope, then find fear that violates our constraint most for (size_t i=0; i modelScores[batchPosition][indexHope]) { if (abs(modelScores[batchPosition][i] - modelScores[batchPosition][indexHope]) > epsilon) { // better model score bleuHope = bleuScores[batchPosition][i]; indexHope = i; } } } else if (bleuScores[batchPosition][i] > bleuHope) { // better than current best bleuHope = bleuScores[batchPosition][i]; indexHope = i; } } float currentViolation = 0; float minimum_bleu_diff = 0.01; for (size_t i=0; i epsilon) { if (one_against_all && bleuDiff > minimum_bleu_diff) { cerr << ".. adding pair"; bleuHopeList.push_back(bleuHope); bleuFearList.push_back(bleuScores[batchPosition][i]); indexHopeList.push_back(indexHope); indexFearList.push_back(i); } else if (modelDiff < bleuDiff) { float diff = bleuDiff - modelDiff; if (diff > epsilon) { if (all_violated) { cerr << ".. adding pair"; bleuHopeList.push_back(bleuHope); bleuFearList.push_back(bleuScores[batchPosition][i]); indexHopeList.push_back(indexHope); indexFearList.push_back(i); } else if (most_violated && diff > currentViolation) { currentViolation = diff; bleuFear = bleuScores[batchPosition][i]; indexFear = i; cerr << "Rank " << rank << ", epoch " << epoch << ", current violation: " << currentViolation << " (" << modelDiff << " >= " << bleuDiff << ")" << endl; } } } } } if (most_violated) { if (currentViolation > 0) { cerr << "Rank " << rank << ", epoch " << epoch << ", adding pair with violation " << currentViolation << endl; cerr << "Rank " << rank << ", epoch " << epoch << ", hope: " << bleuHope << " (" << indexHope << "), fear: " << bleuFear << " (" << indexFear << ")" << endl; bleuScoresHope[batchPosition].push_back(bleuHope); bleuScoresFear[batchPosition].push_back(bleuFear); featureValuesHope[batchPosition].push_back(featureValues[batchPosition][indexHope]); featureValuesFear[batchPosition].push_back(featureValues[batchPosition][indexFear]); float modelScoreHope = modelScores[batchPosition][indexHope]; float modelScoreFear = modelScores[batchPosition][indexFear]; if (most_violated_reg) { // reduce model score difference by factor ~0.5 float reg = currentViolation/4; modelScoreHope += abs(reg); modelScoreFear -= abs(reg); float newViolation = (bleuHope - bleuFear) - (modelScoreHope - modelScoreFear); cerr << "Rank " << rank << ", epoch " << epoch << ", regularized violation: " << newViolation << endl; } modelScoresHope[batchPosition].push_back(modelScoreHope); modelScoresFear[batchPosition].push_back(modelScoreFear); featureValues[batchPosition][indexHope].IncrementSparseHopeFeatures(); featureValues[batchPosition][indexFear].IncrementSparseFearFeatures(); } else { cerr << "Rank " << rank << ", epoch " << epoch << ", no violated constraint found." << endl; skip_example = 1; } } else cerr << endl; } if (max_bleu_diff) { cerr << "Rank " << rank << ", epoch " << epoch << ", pick pair with max Bleu diff from list: " << bleuScores[batchPosition].size() << endl; for (size_t i=0; i hopeList, fearList; for (size_t i=0; i > losses(actualBatchSize); if (model_hope_fear) { // Set loss for each sentence as BLEU(oracle) - BLEU(hypothesis) for (size_t batchPosition = 0; batchPosition < actualBatchSize; ++batchPosition) { for (size_t j = 0; j < bleuScores[batchPosition].size(); ++j) { losses[batchPosition].push_back(oracleBleuScores[batchPosition] - bleuScores[batchPosition][j]); } } } // set weight for bleu feature to 0 before optimizing vector::const_iterator iter; const vector &featureFunctions2 = FeatureFunction::GetFeatureFunctions(); for (iter = featureFunctions2.begin(); iter != featureFunctions2.end(); ++iter) { if ((*iter)->GetScoreProducerDescription() == "BleuScoreFeature") { mosesWeights.Assign(*iter, 0); break; } } // scale LM feature (to avoid rapid changes) if (scale_lm) { cerr << "scale lm" << endl; const LMList& lmList_new = staticData.GetLMList(); for (LMList::const_iterator iter = lmList_new.begin(); iter != lmList_new.end(); ++iter) { // scale down score if (model_hope_fear) { scaleFeatureScore(*iter, scale_lm_factor, featureValues, rank, epoch); } else { scaleFeatureScore(*iter, scale_lm_factor, featureValuesHope, rank, epoch); scaleFeatureScore(*iter, scale_lm_factor, featureValuesFear, rank, epoch); } } } // scale WP if (scale_wp) { // scale up weight WordPenaltyProducer *wp = StaticData::InstanceNonConst().GetWordPenaltyProducer(); // scale down score if (model_hope_fear) { scaleFeatureScore(wp, scale_wp_factor, featureValues, rank, epoch); } else { scaleFeatureScore(wp, scale_wp_factor, featureValuesHope, rank, epoch); scaleFeatureScore(wp, scale_wp_factor, featureValuesFear, rank, epoch); } } // print out the feature values if (print_feature_values) { cerr << "\nRank " << rank << ", epoch " << epoch << ", feature values: " << endl; if (model_hope_fear) printFeatureValues(featureValues); else { cerr << "hope: " << endl; printFeatureValues(featureValuesHope); cerr << "fear: " << endl; printFeatureValues(featureValuesFear); } } // apply learning rates to feature vectors before optimization if (feature_confidence) { cerr << "Rank " << rank << ", epoch " << epoch << ", apply feature learning rates with decays " << decay_core << "/" << decay_sparse << ": " << featureLearningRates << endl; if (model_hope_fear) { applyPerFeatureLearningRates(featureValues, featureLearningRates, sparse_r0); } else { applyPerFeatureLearningRates(featureValuesHope, featureLearningRates, sparse_r0); applyPerFeatureLearningRates(featureValuesFear, featureLearningRates, sparse_r0); } } else { // apply fixed learning rates cerr << "Rank " << rank << ", epoch " << epoch << ", apply fixed learning rates, core: " << core_r0 << ", sparse: " << sparse_r0 << endl; if (core_r0 != 1.0 || sparse_r0 != 1.0) { if (model_hope_fear) { applyLearningRates(featureValues, core_r0, sparse_r0); } else { applyLearningRates(featureValuesHope, core_r0, sparse_r0); applyLearningRates(featureValuesFear, core_r0, sparse_r0); } } } if (kbest) { // If we are tuning a global weight for a sparse producer, // we must collapse the sparse features first (report weighted aggregate) if (tuneMetaFeature) { for (unsigned i = 0; i < sparseProducers.size(); ++i) { float spWeight = sparseProducers[i]->GetSparseProducerWeight(); if (spWeight != 1.0) { MetaFeatureProducer *m = staticData.GetMetaFeatureProducer(); for (size_t i=0; i < featureValuesHope.size(); ++i) { for (size_t j=0; j < featureValuesHope[i].size(); ++j) { // multiply sparse feature values with weights const FVector scores = featureValuesHope[i][j].GetVectorForProducer(sparseProducers[i]); const FVector &weights = staticData.GetAllWeights().GetScoresVector(); float aggregate = scores.inner_product(weights); //cerr << "Rank " << rank << ", epoch " << epoch << ", sparse Producer " << //sparseProducers[i]->GetScoreProducerDescription() //<< " aggregate: " << aggregate << endl; aggregate *= spWeight; //cerr << "Rank " << rank << ", epoch " << epoch << ", sparse Producer " << //sparseProducers[i]->GetScoreProducerDescription() //<< " weighted aggregate: " << aggregate << endl; // copy core features to a new collection, then assign aggregated sparse feature ScoreComponentCollection scoresAggregate; scoresAggregate.CoreAssign(featureValuesHope[i][j]); scoresAggregate.Assign(m, aggregate); featureValuesHope[i][j] = scoresAggregate; } } for (size_t i=0; i < featureValuesFear.size(); ++i) { for (size_t j=0; j < featureValuesFear[i].size(); ++j) { // multiply sparse feature values with weights const FVector scores = featureValuesFear[i][j].GetVectorForProducer(sparseProducers[i]); const FVector &weights = staticData.GetAllWeights().GetScoresVector(); float aggregate = scores.inner_product(weights); aggregate *= spWeight; // copy core features to a new collection, then assign aggregated sparse feature ScoreComponentCollection scoresAggregate; scoresAggregate.CoreAssign(featureValuesFear[i][j]); scoresAggregate.Assign(m, aggregate); featureValuesFear[i][j] = scoresAggregate; } } cerr << "Rank " << rank << ", epoch " << epoch << ", new hope feature vector: " << featureValuesHope[0][0] << endl; cerr << "Rank " << rank << ", epoch " << epoch << ", new fear feature vector: " << featureValuesFear[0][0] << endl; } } } } // Run optimiser on batch: VERBOSE(1, "\nRank " << rank << ", epoch " << epoch << ", run optimiser:" << endl); size_t update_status = 1; ScoreComponentCollection weightUpdate; if (perceptron_update) { vector > dummy1; update_status = optimiser->updateWeightsHopeFear( weightUpdate, featureValuesHope, featureValuesFear, dummy1, dummy1, dummy1, dummy1, learning_rate, rank, epoch); } else if (hope_fear) { if (bleuScoresHope[0][0] >= min_oracle_bleu) { if (hope_n == 1 && fear_n ==1 && batchSize == 1 && !hildreth) { update_status = ((MiraOptimiser*) optimiser)->updateWeightsAnalytically(weightUpdate, featureValuesHope[0][0], featureValuesFear[0][0], bleuScoresHope[0][0], bleuScoresFear[0][0], modelScoresHope[0][0], modelScoresFear[0][0], learning_rate, rank, epoch); } else update_status = optimiser->updateWeightsHopeFear(weightUpdate, featureValuesHope, featureValuesFear, bleuScoresHope, bleuScoresFear, modelScoresHope, modelScoresFear, learning_rate, rank, epoch); } else update_status = 1; } else if (kbest) { if (selective) update_status = ((MiraOptimiser*)optimiser)->updateWeightsHopeFearSelective( weightUpdate, featureValuesHope, featureValuesFear, bleuScoresHope, bleuScoresFear, modelScoresHope, modelScoresFear, learning_rate, rank, epoch); else if (summed) update_status = ((MiraOptimiser*)optimiser)->updateWeightsHopeFearSummed( weightUpdate, featureValuesHope, featureValuesFear, bleuScoresHope, bleuScoresFear, modelScoresHope, modelScoresFear, learning_rate, rank, epoch, rescaleSlack, makePairs); else { if (batchSize == 1 && featureValuesHope[0].size() == 1 && !hildreth) { cerr << "Rank " << rank << ", epoch " << epoch << ", model score hope: " << modelScoresHope[0][0] << endl; cerr << "Rank " << rank << ", epoch " << epoch << ", model score fear: " << modelScoresFear[0][0] << endl; update_status = ((MiraOptimiser*) optimiser)->updateWeightsAnalytically( weightUpdate, featureValuesHope[0][0], featureValuesFear[0][0], bleuScoresHope[0][0], bleuScoresFear[0][0], modelScoresHope[0][0], modelScoresFear[0][0], learning_rate, rank, epoch); } else { cerr << "Rank " << rank << ", epoch " << epoch << ", model score hope: " << modelScoresHope[0][0] << endl; cerr << "Rank " << rank << ", epoch " << epoch << ", model score fear: " << modelScoresFear[0][0] << endl; update_status = optimiser->updateWeightsHopeFear(weightUpdate, featureValuesHope, featureValuesFear, bleuScoresHope, bleuScoresFear, modelScoresHope, modelScoresFear, learning_rate, rank, epoch); } } } else { // model_hope_fear update_status = ((MiraOptimiser*) optimiser)->updateWeights(weightUpdate, featureValues, losses, bleuScores, modelScores, oracleFeatureValues, oracleBleuScores, oracleModelScores, learning_rate, rank, epoch); } // sumStillViolatedConstraints += update_status; if (update_status == 0) { // if weights were updated // apply weight update if (debug) cerr << "Rank " << rank << ", epoch " << epoch << ", update: " << weightUpdate << endl; if (tuneMetaFeature) { MetaFeatureProducer *m = staticData.GetMetaFeatureProducer(); // update sparse producer weight // (NOTE: this currently doesn't work for more than one sparse producer) float metaWeightUpdate = weightUpdate.GetScoreForProducer(m); const vector sparseProducers = staticData.GetSparseProducers(); FeatureFunction* ff = const_cast(sparseProducers[0]); if (sparseProducers[0]->GetScoreProducerDescription().compare("wt") == 0) { WordTranslationFeature* wt = static_cast(ff); float newWeight = wt->GetSparseProducerWeight(); cerr << "Rank " << rank << ", epoch " << epoch << ", old meta weight: " << newWeight << endl; newWeight += metaWeightUpdate; wt->SetSparseProducerWeight(newWeight); cerr << "Rank " << rank << ", epoch " << epoch << ", new meta weight: " << newWeight << endl; } else if (sparseProducers[0]->GetScoreProducerDescription().compare("pp") == 0) { PhrasePairFeature* pp = static_cast(ff); float newWeight = pp->GetSparseProducerWeight(); cerr << "Rank " << rank << ", epoch " << epoch << ", old meta weight: " << newWeight << endl; newWeight += metaWeightUpdate; pp->SetSparseProducerWeight(newWeight); cerr << "Rank " << rank << ", epoch " << epoch << ", new meta weight: " << newWeight << endl; } } if (feature_confidence) { // update confidence counts based on weight update confidenceCounts.UpdateConfidenceCounts(weightUpdate, signed_counts); // update feature learning rates featureLearningRates.UpdateLearningRates(decay_core, decay_sparse, confidenceCounts, core_r0, sparse_r0); } // apply weight update to Moses weights mosesWeights.PlusEquals(weightUpdate); if (normaliseWeights && !tuneMetaFeature) mosesWeights.L1Normalise(); cumulativeWeights.PlusEquals(mosesWeights); if (sparseAverage) { ScoreComponentCollection binary; binary.SetToBinaryOf(mosesWeights); cumulativeWeightsBinary.PlusEquals(binary); } ++numberOfUpdates; ++numberOfUpdatesThisEpoch; if (averageWeights && !tuneMetaFeature) { ScoreComponentCollection averageWeights(cumulativeWeights); if (accumulateWeights) { averageWeights.DivideEquals(numberOfUpdates); } else { averageWeights.DivideEquals(numberOfUpdatesThisEpoch); } mosesWeights = averageWeights; } // set new Moses weights decoder->setWeights(mosesWeights); //cerr << "Rank " << rank << ", epoch " << epoch << ", new weights: " << mosesWeights << endl; } // update history (for approximate document Bleu) if (historyBleu || simpleHistoryBleu) { for (size_t i = 0; i < oneBests.size(); ++i) cerr << "Rank " << rank << ", epoch " << epoch << ", update history with 1best length: " << oneBests[i].size() << " "; decoder->updateHistory(oneBests, inputLengths, ref_ids, rank, epoch); deleteTranslations(oneBests); } } // END TRANSLATE AND UPDATE BATCH // size of all shards except for the last one size_t generalShardSize; if (trainWithMultipleFolds) generalShardSize = order.size()/coresPerFold; else generalShardSize = order.size()/size; size_t mixing_base = mixingFrequency == 0 ? 0 : generalShardSize / mixingFrequency; size_t dumping_base = weightDumpFrequency == 0 ? 0 : generalShardSize / weightDumpFrequency; bool mix = evaluateModulo(shardPosition, mixing_base, actualBatchSize); // mix weights? if (mix) { #ifdef MPI_ENABLE cerr << "Rank " << rank << ", epoch " << epoch << ", mixing weights.. " << endl; // collect all weights in mixedWeights and divide by number of processes mpi::reduce(world, mosesWeights, mixedWeights, SCCPlus(), 0); // mix confidence counts //mpi::reduce(world, confidenceCounts, mixedConfidenceCounts, SCCPlus(), 0); ScoreComponentCollection totalBinary; if (sparseAverage) { ScoreComponentCollection binary; binary.SetToBinaryOf(mosesWeights); mpi::reduce(world, binary, totalBinary, SCCPlus(), 0); } if (rank == 0) { // divide by number of processes if (sparseNoAverage) mixedWeights.CoreDivideEquals(size); // average only core weights else if (sparseAverage) mixedWeights.DivideEquals(totalBinary); else mixedWeights.DivideEquals(size); // divide confidence counts //mixedConfidenceCounts.DivideEquals(size); // normalise weights after averaging if (normaliseWeights) { mixedWeights.L1Normalise(); } ++weightMixingThisEpoch; if (pruneZeroWeights) { size_t pruned = mixedWeights.PruneZeroWeightFeatures(); cerr << "Rank " << rank << ", epoch " << epoch << ", " << pruned << " zero-weighted features pruned from mixedWeights." << endl; pruned = cumulativeWeights.PruneZeroWeightFeatures(); cerr << "Rank " << rank << ", epoch " << epoch << ", " << pruned << " zero-weighted features pruned from cumulativeWeights." << endl; } if (featureCutoff != -1 && weightMixingThisEpoch == mixingFrequency) { size_t pruned = mixedWeights.PruneSparseFeatures(featureCutoff); cerr << "Rank " << rank << ", epoch " << epoch << ", " << pruned << " features pruned from mixedWeights." << endl; pruned = cumulativeWeights.PruneSparseFeatures(featureCutoff); cerr << "Rank " << rank << ", epoch " << epoch << ", " << pruned << " features pruned from cumulativeWeights." << endl; } if (weightMixingThisEpoch == mixingFrequency || reg_on_every_mix) { if (l1_regularize) { size_t pruned; if (l1_reg_sparse) pruned = mixedWeights.SparseL1Regularize(l1_lambda); else pruned = mixedWeights.L1Regularize(l1_lambda); cerr << "Rank " << rank << ", epoch " << epoch << ", " << "l1-reg. on mixedWeights with lambda=" << l1_lambda << ", pruned: " << pruned << endl; } if (l2_regularize) { if (l2_reg_sparse) mixedWeights.SparseL2Regularize(l2_lambda); else mixedWeights.L2Regularize(l2_lambda); cerr << "Rank " << rank << ", epoch " << epoch << ", " << "l2-reg. on mixedWeights with lambda=" << l2_lambda << endl; } } } // broadcast average weights from process 0 mpi::broadcast(world, mixedWeights, 0); decoder->setWeights(mixedWeights); mosesWeights = mixedWeights; // broadcast summed confidence counts //mpi::broadcast(world, mixedConfidenceCounts, 0); //confidenceCounts = mixedConfidenceCounts; #endif #ifndef MPI_ENABLE //cerr << "\nRank " << rank << ", no mixing, weights: " << mosesWeights << endl; mixedWeights = mosesWeights; #endif } // end mixing // Dump weights? if (trainWithMultipleFolds || weightEpochDump == weightDumpFrequency) { // dump mixed weights at end of every epoch to enable continuing a crashed experiment // (for jackknife every time the weights are mixed) ostringstream filename; if (epoch < 10) filename << weightDumpStem << "_mixed_0" << epoch; else filename << weightDumpStem << "_mixed_" << epoch; if (weightDumpFrequency > 1) filename << "_" << weightEpochDump; mixedWeights.Save(filename.str()); cerr << "Dumping mixed weights during epoch " << epoch << " to " << filename.str() << endl << endl; } if (dumpMixedWeights) { if (mix && rank == 0 && !weightDumpStem.empty()) { // dump mixed weights instead of average weights ostringstream filename; if (epoch < 10) filename << weightDumpStem << "_0" << epoch; else filename << weightDumpStem << "_" << epoch; if (weightDumpFrequency > 1) filename << "_" << weightEpochDump; cerr << "Dumping mixed weights during epoch " << epoch << " to " << filename.str() << endl << endl; mixedWeights.Save(filename.str()); ++weightEpochDump; } } else { if (evaluateModulo(shardPosition, dumping_base, actualBatchSize)) { cerr << "Rank " << rank << ", epoch " << epoch << ", dump weights.. (pos: " << shardPosition << ", base: " << dumping_base << ")" << endl; ScoreComponentCollection tmpAverageWeights(cumulativeWeights); bool proceed = false; if (accumulateWeights) { if (numberOfUpdates > 0) { tmpAverageWeights.DivideEquals(numberOfUpdates); proceed = true; } } else { if (numberOfUpdatesThisEpoch > 0) { if (sparseNoAverage) // average only core weights tmpAverageWeights.CoreDivideEquals(numberOfUpdatesThisEpoch); else if (sparseAverage) tmpAverageWeights.DivideEquals(cumulativeWeightsBinary); else tmpAverageWeights.DivideEquals(numberOfUpdatesThisEpoch); proceed = true; } } if (proceed) { #ifdef MPI_ENABLE // average across processes mpi::reduce(world, tmpAverageWeights, mixedAverageWeights, SCCPlus(), 0); ScoreComponentCollection totalBinary; if (sparseAverage) { ScoreComponentCollection binary; binary.SetToBinaryOf(mosesWeights); mpi::reduce(world, binary, totalBinary, SCCPlus(), 0); } #endif #ifndef MPI_ENABLE mixedAverageWeights = tmpAverageWeights; //FIXME: What do to for non-mpi version ScoreComponentCollection totalBinary; #endif if (rank == 0 && !weightDumpStem.empty()) { // divide by number of processes if (sparseNoAverage) mixedAverageWeights.CoreDivideEquals(size); // average only core weights else if (sparseAverage) mixedAverageWeights.DivideEquals(totalBinary); else mixedAverageWeights.DivideEquals(size); // normalise weights after averaging if (normaliseWeights) { mixedAverageWeights.L1Normalise(); } // dump final average weights ostringstream filename; if (epoch < 10) { filename << weightDumpStem << "_0" << epoch; } else { filename << weightDumpStem << "_" << epoch; } if (weightDumpFrequency > 1) { filename << "_" << weightEpochDump; } /*if (accumulateWeights) { cerr << "\nMixed average weights (cumulative) during epoch " << epoch << ": " << mixedAverageWeights << endl; } else { cerr << "\nMixed average weights during epoch " << epoch << ": " << mixedAverageWeights << endl; }*/ cerr << "Dumping mixed average weights during epoch " << epoch << " to " << filename.str() << endl << endl; mixedAverageWeights.Save(filename.str()); ++weightEpochDump; if (weightEpochDump == weightDumpFrequency) { if (l1_regularize) { size_t pruned = mixedAverageWeights.SparseL1Regularize(l1_lambda); cerr << "Rank " << rank << ", epoch " << epoch << ", " << "l1-reg. on mixedAverageWeights with lambda=" << l1_lambda << ", pruned: " << pruned << endl; } if (l2_regularize) { mixedAverageWeights.SparseL2Regularize(l2_lambda); cerr << "Rank " << rank << ", epoch " << epoch << ", " << "l2-reg. on mixedAverageWeights with lambda=" << l2_lambda << endl; } if (l1_regularize || l2_regularize) { filename << "_reg"; cerr << "Dumping regularized mixed average weights during epoch " << epoch << " to " << filename.str() << endl << endl; mixedAverageWeights.Save(filename.str()); } } if (weightEpochDump == weightDumpFrequency && printFeatureCounts) { // print out all features with counts stringstream s1, s2; s1 << "sparse_feature_hope_counts" << "_" << epoch; s2 << "sparse_feature_fear_counts" << "_" << epoch; ofstream sparseFeatureCountsHope(s1.str().c_str()); ofstream sparseFeatureCountsFear(s2.str().c_str()); mixedAverageWeights.PrintSparseHopeFeatureCounts(sparseFeatureCountsHope); mixedAverageWeights.PrintSparseFearFeatureCounts(sparseFeatureCountsFear); sparseFeatureCountsHope.close(); sparseFeatureCountsFear.close(); } } } }// end dumping } // end if dump } // end of shard loop, end of this epoch cerr << "Rank " << rank << ", epoch " << epoch << ", end of epoch.." << endl; if (historyBleu || simpleHistoryBleu) { cerr << "Bleu feature history after epoch " << epoch << endl; decoder->printBleuFeatureHistory(cerr); } // cerr << "Rank " << rank << ", epoch " << epoch << ", sum of violated constraints: " << sumStillViolatedConstraints << endl; // Check whether there were any weight updates during this epoch size_t sumUpdates; size_t *sendbuf_uint, *recvbuf_uint; sendbuf_uint = (size_t *) malloc(sizeof(size_t)); recvbuf_uint = (size_t *) malloc(sizeof(size_t)); #ifdef MPI_ENABLE sendbuf_uint[0] = numberOfUpdatesThisEpoch; recvbuf_uint[0] = 0; MPI_Reduce(sendbuf_uint, recvbuf_uint, 1, MPI_UNSIGNED, MPI_SUM, 0, world); sumUpdates = recvbuf_uint[0]; #endif #ifndef MPI_ENABLE sumUpdates = numberOfUpdatesThisEpoch; #endif if (rank == 0 && sumUpdates == 0) { cerr << "\nNo weight updates during this epoch.. stopping." << endl; stop = true; #ifdef MPI_ENABLE mpi::broadcast(world, stop, 0); #endif } if (!stop) { // Test if weights have converged if (weightConvergence) { bool reached = true; if (rank == 0 && (epoch >= 2)) { ScoreComponentCollection firstDiff, secondDiff; if (dumpMixedWeights) { firstDiff = mixedWeights; firstDiff.MinusEquals(mixedWeightsPrevious); secondDiff = mixedWeights; secondDiff.MinusEquals(mixedWeightsBeforePrevious); } else { firstDiff = mixedAverageWeights; firstDiff.MinusEquals(mixedAverageWeightsPrevious); secondDiff = mixedAverageWeights; secondDiff.MinusEquals(mixedAverageWeightsBeforePrevious); } VERBOSE(1, "Average weight changes since previous epoch: " << firstDiff << " (max: " << firstDiff.GetLInfNorm() << ")" << endl); VERBOSE(1, "Average weight changes since before previous epoch: " << secondDiff << " (max: " << secondDiff.GetLInfNorm() << ")" << endl << endl); // check whether stopping criterion has been reached // (both difference vectors must have all weight changes smaller than min_weight_change) if (firstDiff.GetLInfNorm() >= min_weight_change) reached = false; if (secondDiff.GetLInfNorm() >= min_weight_change) reached = false; if (reached) { // stop MIRA stop = true; cerr << "\nWeights have converged after epoch " << epoch << ".. stopping MIRA." << endl; ScoreComponentCollection dummy; ostringstream endfilename; endfilename << "stopping"; dummy.Save(endfilename.str()); } } mixedWeightsBeforePrevious = mixedWeightsPrevious; mixedWeightsPrevious = mixedWeights; mixedAverageWeightsBeforePrevious = mixedAverageWeightsPrevious; mixedAverageWeightsPrevious = mixedAverageWeights; #ifdef MPI_ENABLE mpi::broadcast(world, stop, 0); #endif } //end if (weightConvergence) } } // end of epoch loop #ifdef MPI_ENABLE MPI_Finalize(); #endif time(&now); cerr << "Rank " << rank << ", " << ctime(&now); if (rank == 0) { ScoreComponentCollection dummy; ostringstream endfilename; endfilename << "finished"; dummy.Save(endfilename.str()); } delete decoder; exit(0); } bool loadSentences(const string& filename, vector& sentences) { ifstream in(filename.c_str()); if (!in) return false; string line; while (getline(in, line)) sentences.push_back(line); return true; } bool evaluateModulo(size_t shard_position, size_t mix_or_dump_base, size_t actual_batch_size) { if (mix_or_dump_base == 0) return 0; if (actual_batch_size > 1) { bool mix_or_dump = false; size_t numberSubtracts = actual_batch_size; do { if (shard_position % mix_or_dump_base == 0) { mix_or_dump = true; break; } --shard_position; --numberSubtracts; } while (numberSubtracts > 0); return mix_or_dump; } else { return ((shard_position % mix_or_dump_base) == 0); } } void printFeatureValues(vector > &featureValues) { for (size_t i = 0; i < featureValues.size(); ++i) { for (size_t j = 0; j < featureValues[i].size(); ++j) { cerr << featureValues[i][j] << endl; } } cerr << endl; } void deleteTranslations(vector > &translations) { for (size_t i = 0; i < translations.size(); ++i) { for (size_t j = 0; j < translations[i].size(); ++j) { delete translations[i][j]; } } } void decodeHopeOrFear(size_t rank, size_t size, size_t decode, string filename, vector &inputSentences, MosesDecoder* decoder, size_t n, float bleuWeight) { if (decode == 1) cerr << "Rank " << rank << ", decoding dev input set according to hope objective.. " << endl; else if (decode == 2) cerr << "Rank " << rank << ", decoding dev input set according to fear objective.. " << endl; else cerr << "Rank " << rank << ", decoding dev input set according to normal objective.. " << endl; // Create shards according to the number of processes used vector order; for (size_t i = 0; i < inputSentences.size(); ++i) order.push_back(i); vector shard; float shardSize = (float) (order.size()) / size; size_t shardStart = (size_t) (shardSize * rank); size_t shardEnd = (size_t) (shardSize * (rank + 1)); if (rank == size - 1) { shardEnd = inputSentences.size(); shardSize = shardEnd - shardStart; } VERBOSE(1, "Rank " << rank << ", shard start: " << shardStart << " Shard end: " << shardEnd << endl); VERBOSE(1, "Rank " << rank << ", shard size: " << shardSize << endl); shard.resize(shardSize); copy(order.begin() + shardStart, order.begin() + shardEnd, shard.begin()); // open files for writing stringstream fname; fname << filename << ".rank" << rank; filename = fname.str(); ostringstream filename_nbest; filename_nbest << filename << "." << n << "best"; ofstream out(filename.c_str()); ofstream nbest_out((filename_nbest.str()).c_str()); if (!out) { ostringstream msg; msg << "Unable to open " << fname.str(); throw runtime_error(msg.str()); } if (!nbest_out) { ostringstream msg; msg << "Unable to open " << filename_nbest; throw runtime_error(msg.str()); } for (size_t i = 0; i < shard.size(); ++i) { size_t sid = shard[i]; string& input = inputSentences[sid]; vector > dummyFeatureValues; vector > dummyBleuScores; vector > dummyModelScores; vector newFeatureValues; vector newScores; dummyFeatureValues.push_back(newFeatureValues); dummyBleuScores.push_back(newScores); dummyModelScores.push_back(newScores); float factor = 0.0; if (decode == 1) factor = 1.0; if (decode == 2) factor = -1.0; cerr << "Rank " << rank << ", translating sentence " << sid << endl; bool realBleu = false; vector< vector > nbestOutput = decoder->getNBest(input, sid, n, factor, bleuWeight, dummyFeatureValues[0], dummyBleuScores[0], dummyModelScores[0], n, realBleu, true, false, rank, 0, ""); cerr << endl; decoder->cleanup(StaticData::Instance().GetSearchAlgorithm() == ChartDecoding); for (size_t i = 0; i < nbestOutput.size(); ++i) { vector output = nbestOutput[i]; stringstream translation; for (size_t k = 0; k < output.size(); ++k) { Word* w = const_cast(output[k]); translation << w->GetString(0); translation << " "; } if (i == 0) out << translation.str() << endl; nbest_out << sid << " ||| " << translation.str() << " ||| " << dummyFeatureValues[0][i] << " ||| " << dummyModelScores[0][i] << " ||| sBleu=" << dummyBleuScores[0][i] << endl; } } out.close(); nbest_out.close(); cerr << "Closing files " << filename << " and " << filename_nbest.str() << endl; #ifdef MPI_ENABLE MPI_Finalize(); #endif time_t now; time(&now); cerr << "Rank " << rank << ", " << ctime(&now); delete decoder; exit(0); } void applyLearningRates(vector > &featureValues, float core_r0, float sparse_r0) { for (size_t i=0; i > &featureValues, ScoreComponentCollection featureLearningRates, float sparse_r0) { for (size_t i=0; i > &featureValues, size_t rank, size_t epoch) { string name = sp->GetScoreProducerDescription(); // scale down score float featureScore; for (size_t i=0; i > &featureValues, size_t rank, size_t epoch) { string name = sp->GetScoreProducerDescription(); // scale down score for (size_t i=0; i featureScores = featureValues[i][j].GetScoresForProducer(sp); for (size_t k=0; k