// // TMMTWrapper.cpp // moses // // Created by Hieu Hoang on 26/07/2012. // Copyright 2012 __MyCompanyName__. All rights reserved. // #include #include "tm-mt/TMMTWrapper.h" #include "tm-mt/SentenceAlignment.h" #include "tm-mt/Vocabulary.h" #include "tm-mt/Match.h" #include "Util.h" using namespace std; namespace tmmt { int basic_flag = false; int lsed_flag = true; int refined_flag = true; int length_filter_flag = true; int parse_flag = true; int min_match = 70; int multiple_flag = false; int multiple_slack = 0; int multiple_max = 100; map< WORD_ID,vector< int > > single_word_index; TMMTWrapper::TMMTWrapper(const std::string &sourcePath, const std::string &targetPath, const std::string &alignmentPath) { // create suffix array //load_corpus(m_config[0], input); load_corpus(sourcePath, source); load_target(targetPath, targetAndAlignment); load_alignment(alignmentPath, targetAndAlignment); //tmmt::SuffixArray suffixArray( m_config[0] ); } void TMMTWrapper::load_corpus( const std::string &fileName, vector< vector< WORD_ID > > &corpus ) { // source ifstream fileStream; fileStream.open(fileName.c_str()); if (!fileStream) { cerr << "file not found: " << fileName << endl; exit(1); } cerr << "loading " << fileName << endl; istream *fileStreamP = &fileStream; char line[LINE_MAX_LENGTH]; while(true) { SAFE_GETLINE((*fileStreamP), line, LINE_MAX_LENGTH, '\n'); if (fileStreamP->eof()) break; corpus.push_back( vocabulary.Tokenize( line ) ); } } void TMMTWrapper::load_target(const std::string &fileName, vector< vector< SentenceAlignment > > &corpus) { ifstream fileStream; fileStream.open(fileName.c_str()); if (!fileStream) { cerr << "file not found: " << fileName << endl; exit(1); } cerr << "loading " << fileName << endl; istream *fileStreamP = &fileStream; WORD_ID delimiter = vocabulary.StoreIfNew("|||"); int lineNum = 0; char line[LINE_MAX_LENGTH]; while(true) { SAFE_GETLINE((*fileStreamP), line, LINE_MAX_LENGTH, '\n'); if (fileStreamP->eof()) break; vector toks = vocabulary.Tokenize( line ); corpus.push_back(vector< SentenceAlignment >()); vector< SentenceAlignment > &vec = corpus.back(); vec.push_back(SentenceAlignment()); SentenceAlignment *sentence = &vec.back(); const WORD &countStr = vocabulary.GetWord(toks[0]); sentence->count = atoi(countStr.c_str()); for (size_t i = 1; i < toks.size(); ++i) { WORD_ID wordId = toks[i]; if (wordId == delimiter) { // target and alignments can have multiple sentences. vec.push_back(SentenceAlignment()); sentence = &vec.back(); // count ++i; const WORD &countStr = vocabulary.GetWord(toks[i]); sentence->count = atoi(countStr.c_str()); } else { // just a normal word, add sentence->target.push_back(wordId); } } ++lineNum; } } void TMMTWrapper::load_alignment(const std::string &fileName, vector< vector< SentenceAlignment > > &corpus ) { ifstream fileStream; fileStream.open(fileName.c_str()); if (!fileStream) { cerr << "file not found: " << fileName << endl; exit(1); } cerr << "loading " << fileName << endl; istream *fileStreamP = &fileStream; string delimiter = "|||"; int lineNum = 0; char line[LINE_MAX_LENGTH]; while(true) { SAFE_GETLINE((*fileStreamP), line, LINE_MAX_LENGTH, '\n'); if (fileStreamP->eof()) break; vector< SentenceAlignment > &vec = corpus[lineNum]; size_t targetInd = 0; SentenceAlignment *sentence = &vec[targetInd]; vector toks = Moses::Tokenize(line); for (size_t i = 0; i < toks.size(); ++i) { string &tok = toks[i]; if (tok == delimiter) { // target and alignments can have multiple sentences. ++targetInd; sentence = &vec[targetInd]; ++i; } else { // just a normal alignment, add vector alignPoint = Moses::Tokenize(tok, "-"); assert(alignPoint.size() == 2); sentence->alignment.push_back(pair(alignPoint[0], alignPoint[1])); } } ++lineNum; } } /* Letter string edit distance, e.g. sub 'their' to 'there' costs 2 */ unsigned int TMMTWrapper::letter_sed( WORD_ID aIdx, WORD_ID bIdx ) { // check if already computed -> lookup in cache pair< WORD_ID, WORD_ID > pIdx = make_pair( aIdx, bIdx ); map< pair< WORD_ID, WORD_ID >, unsigned int >::const_iterator lookup = lsed.find( pIdx ); if (lookup != lsed.end()) { return (lookup->second); } // get surface strings for word indices const string &a = vocabulary.GetWord( aIdx ); const string &b = vocabulary.GetWord( bIdx ); // initialize cost matrix unsigned int **cost = (unsigned int**) calloc( sizeof( unsigned int* ), a.size()+1 ); for( unsigned int i=0; i<=a.size(); i++ ) { cost[i] = (unsigned int*) calloc( sizeof(unsigned int), b.size()+1 ); cost[i][0] = i; } for( unsigned int j=0; j<=b.size(); j++ ) { cost[0][j] = j; } // core string edit distance loop for( unsigned int i=1; i<=a.size(); i++ ) { for( unsigned int j=1; j<=b.size(); j++ ) { unsigned int ins = cost[i-1][j] + 1; unsigned int del = cost[i][j-1] + 1; bool match = (a.substr(i-1,1).compare( b.substr(j-1,1) ) == 0); unsigned int diag = cost[i-1][j-1] + (match ? 0 : 1); unsigned int min = (ins < del) ? ins : del; min = (diag < min) ? diag : min; cost[i][j] = min; } } // clear out memory unsigned int final = cost[a.size()][b.size()]; for( unsigned int i=0; i<=a.size(); i++ ) { free( cost[i] ); } free( cost ); // cache and return result lsed[ pIdx ] = final; return final; } /* string edit distance implementation */ unsigned int TMMTWrapper::sed( const vector< WORD_ID > &a, const vector< WORD_ID > &b, string &best_path, bool use_letter_sed ) { // initialize cost and path matrices unsigned int **cost = (unsigned int**) calloc( sizeof( unsigned int* ), a.size()+1 ); char **path = (char**) calloc( sizeof( char* ), a.size()+1 ); for( unsigned int i=0; i<=a.size(); i++ ) { cost[i] = (unsigned int*) calloc( sizeof(unsigned int), b.size()+1 ); path[i] = (char*) calloc( sizeof(char), b.size()+1 ); if (i>0) { cost[i][0] = cost[i-1][0]; if (use_letter_sed) { cost[i][0] += vocabulary.GetWord( a[i-1] ).size(); } else { cost[i][0]++; } } else { cost[i][0] = 0; } path[i][0] = 'I'; } for( unsigned int j=0; j<=b.size(); j++ ) { if (j>0) { cost[0][j] = cost[0][j-1]; if (use_letter_sed) { cost[0][j] += vocabulary.GetWord( b[j-1] ).size(); } else { cost[0][j]++; } } else { cost[0][j] = 0; } path[0][j] = 'D'; } // core string edit distance algorithm for( unsigned int i=1; i<=a.size(); i++ ) { for( unsigned int j=1; j<=b.size(); j++ ) { unsigned int ins = cost[i-1][j]; unsigned int del = cost[i][j-1]; unsigned int match; if (use_letter_sed) { ins += vocabulary.GetWord( a[i-1] ).size(); del += vocabulary.GetWord( b[j-1] ).size(); match = letter_sed( a[i-1], b[j-1] ); } else { ins++; del++; match = ( a[i-1] == b[j-1] ) ? 0 : 1; } unsigned int diag = cost[i-1][j-1] + match; char action = (ins < del) ? 'I' : 'D'; unsigned int min = (ins < del) ? ins : del; if (diag < min) { action = (match>0) ? 'S' : 'M'; min = diag; } cost[i][j] = min; path[i][j] = action; } } // construct string for best path unsigned int i = a.size(); unsigned int j = b.size(); best_path = ""; while( i>0 || j>0 ) { best_path = path[i][j] + best_path; if (path[i][j] == 'I') { i--; } else if (path[i][j] == 'D') { j--; } else { i--; j--; } } // clear out memory unsigned int final = cost[a.size()][b.size()]; for( unsigned int i=0; i<=a.size(); i++ ) { free( cost[i] ); free( path[i] ); } free( cost ); free( path ); // return result return final; } /* utlility function: compute length of sentence in characters (spaces do not count) */ unsigned int TMMTWrapper::compute_length( const vector< WORD_ID > &sentence ) { unsigned int length = 0; for( unsigned int i=0; i > source, vector< vector< WORD_ID > > input ) { // go through input set... for(unsigned int i=0;i= best_cost)) { continue; } // compute string edit distance string path; unsigned int cost = sed( input[i], source[s], path, use_letter_sed ); // update if new best if (cost < best_cost) { best_cost = cost; best_path = path; best_match = s; } } cout << best_cost << " ||| " << best_match << " ||| " << best_path << endl; } } /* definition of short matches very short n-gram matches (1-grams) will not be looked up in the suffix array, since there are too many matches and for longer sentences, at least one 2-gram match must occur */ int TMMTWrapper::short_match_max_length( int input_length ) { if ( ! refined_flag ) return 0; if ( input_length >= 5 ) return 1; return 0; } /* if we have non-short matches in a sentence, we need to take a closer look at it. this function creates a hash map for all input words and their positions (to be used by the next function) (done here, because this has be done only once for an input sentence) */ void TMMTWrapper::init_short_matches( const vector< WORD_ID > &input ) { int max_length = short_match_max_length( input.size() ); if (max_length == 0) return; single_word_index.clear(); // store input words and their positions in hash map for(int i=0; i position_vector; single_word_index[ input[i] ] = position_vector; } single_word_index[ input[i] ].push_back( i ); } } /* add all short matches to list of matches for a sentence */ void TMMTWrapper::add_short_matches( vector< Match > &match, const vector< WORD_ID > &tm, int input_length, int best_cost ) { int max_length = short_match_max_length( input_length ); if (max_length == 0) return; int tm_length = tm.size(); map< WORD_ID,vector< int > >::iterator input_word_hit; for(int t_pos=0; t_pos &position_vector = input_word_hit->second; for(int j=0; j0 && i_pos == t_pos ) min_cost++; // after match max_cost += max( (input_length-i_pos) , (tm_length-t_pos)); min_cost += abs( (input_length-i_pos) - (tm_length-t_pos)); if ( i_pos != input_length-1 && (input_length-i_pos) == (tm_length-t_pos)) min_cost++; if (min_cost <= best_cost) { Match new_match( i_pos,i_pos, t_pos,t_pos, min_cost,max_cost,0 ); match.push_back( new_match ); } } } } } /* remove matches that are subsumed by a larger match */ vector< Match > TMMTWrapper::prune_matches( const vector< Match > &match, int best_cost ) { //cerr << "\tpruning"; vector< Match > pruned; for(int i=match.size()-1; i>=0; i--) { //cerr << " (" << match[i].input_start << "," << match[i].input_end // << " ; " << match[i].tm_start << "," << match[i].tm_end // << " * " << match[i].min_cost << ")"; //if (match[i].min_cost > best_cost) // continue; bool subsumed = false; for(int j=match.size()-1; j>=0; j--) { if (i!=j // do not compare match with itself && ( match[i].input_end - match[i].input_start <= match[j].input_end - match[j].input_start ) // i shorter than j && ((match[i].input_start == match[j].input_start && match[i].tm_start == match[j].tm_start ) || (match[i].input_end == match[j].input_end && match[i].tm_end == match[j].tm_end) ) ) { subsumed = true; } } if (! subsumed && match[i].min_cost <= best_cost) { //cerr << "*"; pruned.push_back( match[i] ); } } //cerr << endl; return pruned; } /* A* parsing method to compute string edit distance */ int TMMTWrapper::parse_matches( vector< Match > &match, int input_length, int tm_length, int &best_cost ) { // cerr << "sentence has " << match.size() << " matches, best cost: " << best_cost << ", lengths input: " << input_length << " tm: " << tm_length << endl; if (match.size() == 1) return match[0].max_cost; if (match.size() == 0) return input_length+tm_length; int this_best_cost = input_length + tm_length; for(int i=0;i > multi_match; multi_match.push_back( match ); int match_level = 1; while(multi_match[ match_level-1 ].size()>0) { // init vector vector< Match > empty; multi_match.push_back( empty ); for(int first_level = 0; first_level <= (match_level-1)/2; first_level++) { int second_level = match_level - first_level -1; //cerr << "\tcombining level " << first_level << " and " << second_level << endl; vector< Match > &first_match = multi_match[ first_level ]; vector< Match > &second_match = multi_match[ second_level ]; for(int i1 = 0; i1 < first_match.size(); i1++) { for(int i2 = 0; i2 < second_match.size(); i2++) { // do not combine the same pair twice if (first_level == second_level && i2 <= i1) { continue; } // get sorted matches (first is before second) Match *first, *second; if (first_match[i1].input_start < second_match[i2].input_start ) { first = &first_match[i1]; second = &second_match[i2]; } else { second = &first_match[i1]; first = &second_match[i2]; } //cerr << "\tcombining " // << "(" << first->input_start << "," << first->input_end << "), " // << first->tm_start << " [" << first->internal_cost << "]" // << " with " // << "(" << second->input_start << "," << second->input_end << "), " // << second->tm_start<< " [" << second->internal_cost << "]" // << endl; // do not process overlapping matches if (first->input_end >= second->input_start) { continue; } // no overlap / mismatch in tm if (first->tm_end >= second->tm_start) { continue; } // compute cost int min_cost = 0; int max_cost = 0; // initial min_cost += abs( first->input_start - first->tm_start ); max_cost += max( first->input_start, first->tm_start ); // same number of words, but not sent. start -> cost is at least 1 if (first->input_start == first->tm_start && first->input_start > 0) { min_cost++; } // in-between int skipped_words = second->input_start - first->input_end -1; int skipped_words_tm = second->tm_start - first->tm_end -1; int internal_cost = max( skipped_words, skipped_words_tm ); internal_cost += first->internal_cost + second->internal_cost; min_cost += internal_cost; max_cost += internal_cost; // final min_cost += abs( (tm_length-1 - second->tm_end) - (input_length-1 - second->input_end) ); max_cost += max( (tm_length-1 - second->tm_end), (input_length-1 - second->input_end) ); // same number of words, but not sent. end -> cost is at least 1 if ( ( input_length-1 - second->input_end == tm_length-1 - second->tm_end ) && input_length-1 != second->input_end ) { min_cost++; } // cerr << "\tcost: " << min_cost << "-" << max_cost << endl; // if worst than best cost, forget it if (min_cost > best_cost) { continue; } // add match Match new_match( first->input_start, second->input_end, first->tm_start, second->tm_end, min_cost, max_cost, internal_cost); multi_match[ match_level ].push_back( new_match ); // cerr << "\tstored\n"; // possibly updating this_best_cost if (max_cost < this_best_cost) { // cerr << "\tupdating this best cost to " << max_cost << "\n"; this_best_cost = max_cost; // possibly updating best_cost if (max_cost < best_cost) { // cerr << "\tupdating best cost to " << max_cost << "\n"; best_cost = max_cost; } } } } } match_level++; } return this_best_cost; } } // namespace