mosesdecoder/mira/Perceptron.cpp

91 lines
2.8 KiB
C++

/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2010 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include "Optimiser.h"
using namespace Moses;
using namespace std;
namespace Mira {
vector<int> Perceptron::updateWeightsAnalytically(ScoreComponentCollection& currWeights,
ScoreComponentCollection& featureValues,
float loss,
ScoreComponentCollection& oracleFeatureValues,
float oracleBleuScore,
size_t sentenceId,
float learning_rate,
float max_sentence_update,
size_t rank,
size_t epoch,
bool controlUpdates) {
vector<int> status(1);
status[0] = 0;
return status;
}
vector<int> Perceptron::updateWeightsHopeFear(Moses::ScoreComponentCollection& currWeights,
const std::vector< std::vector<Moses::ScoreComponentCollection> >& featureValuesHope,
const std::vector< std::vector<Moses::ScoreComponentCollection> >& featureValuesFear,
const std::vector<std::vector<float> >& bleuScoresHope,
const std::vector<std::vector<float> >& bleuScoresFear,
const std::vector< size_t> sentenceId,
float learning_rate,
float max_sentence_update,
size_t rank,
size_t epoch,
int updates_per_epoch,
bool controlUpdates) {
vector<int> status(1);
status[0] = 0;
return status;
}
vector<int> Perceptron::updateWeights(ScoreComponentCollection& currWeights,
const vector< vector<ScoreComponentCollection> >& featureValues,
const vector< vector<float> >& losses,
const vector< vector<float> >& bleuScores,
const vector< ScoreComponentCollection>& oracleFeatureValues,
const vector< float> oracleBleuScores,
const vector< size_t> dummy,
float learning_rate,
float max_sentence_update,
size_t rank,
size_t epoch,
int updates_per_epoch,
bool controlUpdates)
{
for (size_t i = 0; i < featureValues.size(); ++i) {
for (size_t j = 0; j < featureValues[i].size(); ++j) {
if (losses[i][j] > 0) {
currWeights.MinusEquals(featureValues[i][j]);
currWeights.PlusEquals(oracleFeatureValues[i]);
}
}
}
vector<int> status(1);
status[0] = 0;
return status;
}
}