mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-07 12:10:36 +03:00
fd577d7a65
Regression tests all check out, and kbmira seems to work fine on a Hansard French->English task. HypPackEnumerator class may be of interest to pro.cpp and future optimizers, as it abstracts a lot of the boilerplate involved in enumerating multiple k-best lists. MiraWeightVector is not really mira-specific - just a weight vector that enables efficient averaging. Could be useful to a perceptron as well. Same goes for MiraFeatureVector. Interaction with sparse features is written, but untested.
41 lines
1.2 KiB
C++
41 lines
1.2 KiB
C++
#include "FeatureData.h"
|
|
|
|
#define BOOST_TEST_MODULE FeatureData
|
|
#include <boost/test/unit_test.hpp>
|
|
|
|
#include <sstream>
|
|
|
|
namespace {
|
|
|
|
void CheckFeatureMap(const FeatureData* feature_data,
|
|
const char* str, int num_feature, int* cnt) {
|
|
for (int i = 0; i < num_feature; ++i) {
|
|
std::stringstream ss;
|
|
ss << str << "_" << i;
|
|
const std::string& s = ss.str();
|
|
BOOST_CHECK_EQUAL(feature_data->getFeatureIndex(s), (std::size_t)(*cnt));
|
|
BOOST_CHECK_EQUAL(feature_data->getFeatureName(*cnt).c_str(), s);
|
|
++(*cnt);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
BOOST_AUTO_TEST_CASE(set_feature_map) {
|
|
std::string str("d_0 d_1 d_2 d_3 d_4 d_5 d_6 lm_0 lm_1 tm_0 tm_1 tm_2 tm_3 tm_4 w_0 ");
|
|
FeatureData feature_data;
|
|
|
|
feature_data.setFeatureMap(str);
|
|
|
|
BOOST_REQUIRE(feature_data.Features() == str);
|
|
BOOST_REQUIRE(feature_data.NumberOfFeatures() == 15);
|
|
|
|
int cnt = 0;
|
|
CheckFeatureMap(&feature_data, "d", 7, &cnt);
|
|
CheckFeatureMap(&feature_data, "lm", 2, &cnt);
|
|
CheckFeatureMap(&feature_data, "tm", 5, &cnt);
|
|
|
|
BOOST_CHECK_EQUAL(feature_data.getFeatureIndex("w_0"), (std::size_t)cnt);
|
|
BOOST_CHECK_EQUAL(feature_data.getFeatureName(cnt).c_str(), "w_0");
|
|
}
|