mosesdecoder/lm/builder/pipeline.cc
2013-01-24 12:07:46 +00:00

322 lines
14 KiB
C++

#include "lm/builder/pipeline.hh"
#include "lm/builder/adjust_counts.hh"
#include "lm/builder/corpus_count.hh"
#include "lm/builder/initial_probabilities.hh"
#include "lm/builder/interpolate.hh"
#include "lm/builder/print.hh"
#include "lm/builder/sort.hh"
#include "lm/sizes.hh"
#include "util/exception.hh"
#include "util/file.hh"
#include "util/stream/io.hh"
#include <algorithm>
#include <iostream>
#include <vector>
namespace lm { namespace builder {
namespace {
void PrintStatistics(const std::vector<uint64_t> &counts, const std::vector<Discount> &discounts) {
std::cerr << "Statistics:\n";
for (size_t i = 0; i < counts.size(); ++i) {
std::cerr << (i + 1) << ' ' << counts[i];
for (size_t d = 1; d <= 3; ++d)
std::cerr << " D" << d << (d == 3 ? "+=" : "=") << discounts[i].amount[d];
std::cerr << '\n';
}
}
class Master {
public:
explicit Master(const PipelineConfig &config)
: config_(config), chains_(config.order), files_(config.order) {
config_.minimum_block = std::max(NGram::TotalSize(config_.order), config_.minimum_block);
}
const PipelineConfig &Config() const { return config_; }
Chains &MutableChains() { return chains_; }
template <class T> Master &operator>>(const T &worker) {
chains_ >> worker;
return *this;
}
// This takes the (partially) sorted ngrams and sets up for adjusted counts.
void InitForAdjust(util::stream::Sort<SuffixOrder, AddCombiner> &ngrams, WordIndex types) {
const std::size_t each_order_min = config_.minimum_block * config_.block_count;
// We know how many unigrams there are. Don't allocate more than needed to them.
const std::size_t min_chains = (config_.order - 1) * each_order_min +
std::min(types * NGram::TotalSize(1), each_order_min);
// Do merge sort with calculated laziness.
const std::size_t merge_using = ngrams.Merge(std::min(config_.TotalMemory() - min_chains, ngrams.DefaultLazy()));
std::vector<uint64_t> count_bounds(1, types);
CreateChains(config_.TotalMemory() - merge_using, count_bounds);
ngrams.Output(chains_.back(), merge_using);
// Setup unigram file.
files_.push_back(util::MakeTemp(config_.TempPrefix()));
}
// For initial probabilities, but this is generic.
void SortAndReadTwice(const std::vector<uint64_t> &counts, Sorts<ContextOrder> &sorts, Chains &second, util::stream::ChainConfig second_config) {
// Do merge first before allocating chain memory.
for (std::size_t i = 1; i < config_.order; ++i) {
sorts[i - 1].Merge(0);
}
// There's no lazy merge, so just divide memory amongst the chains.
CreateChains(config_.TotalMemory(), counts);
chains_.back().ActivateProgress();
chains_[0] >> files_[0].Source();
second_config.entry_size = NGram::TotalSize(1);
second.push_back(second_config);
second.back() >> files_[0].Source();
for (std::size_t i = 1; i < config_.order; ++i) {
util::scoped_fd fd(sorts[i - 1].StealCompleted());
chains_[i].SetProgressTarget(util::SizeOrThrow(fd.get()));
chains_[i] >> util::stream::PRead(util::DupOrThrow(fd.get()), true);
second_config.entry_size = NGram::TotalSize(i + 1);
second.push_back(second_config);
second.back() >> util::stream::PRead(fd.release(), true);
}
}
// There is no sort after this, so go for broke on lazy merging.
template <class Compare> void MaximumLazyInput(const std::vector<uint64_t> &counts, Sorts<Compare> &sorts) {
// Determine the minimum we can use for all the chains.
std::size_t min_chains = 0;
for (std::size_t i = 0; i < config_.order; ++i) {
min_chains += std::min(counts[i] * NGram::TotalSize(i + 1), static_cast<uint64_t>(config_.minimum_block));
}
std::size_t for_merge = min_chains > config_.TotalMemory() ? 0 : (config_.TotalMemory() - min_chains);
std::vector<std::size_t> laziness;
// Prioritize longer n-grams.
for (util::stream::Sort<SuffixOrder> *i = sorts.end() - 1; i >= sorts.begin(); --i) {
laziness.push_back(i->Merge(for_merge));
assert(for_merge >= laziness.back());
for_merge -= laziness.back();
}
std::reverse(laziness.begin(), laziness.end());
CreateChains(for_merge + min_chains, counts);
chains_.back().ActivateProgress();
chains_[0] >> files_[0].Source();
for (std::size_t i = 1; i < config_.order; ++i) {
sorts[i - 1].Output(chains_[i], laziness[i - 1]);
}
}
void BufferFinal(const std::vector<uint64_t> &counts) {
chains_[0] >> files_[0].Sink();
for (std::size_t i = 1; i < config_.order; ++i) {
files_.push_back(util::MakeTemp(config_.TempPrefix()));
chains_[i] >> files_[i].Sink();
}
chains_.Wait(true);
// Use less memory. Because we can.
CreateChains(std::min(config_.sort.buffer_size * config_.order, config_.TotalMemory()), counts);
for (std::size_t i = 0; i < config_.order; ++i) {
chains_[i] >> files_[i].Source();
}
}
template <class Compare> void SetupSorts(Sorts<Compare> &sorts) {
sorts.Init(config_.order - 1);
// Unigrams don't get sorted because their order is always the same.
chains_[0] >> files_[0].Sink();
for (std::size_t i = 1; i < config_.order; ++i) {
sorts.push_back(chains_[i], config_.sort, Compare(i + 1));
}
chains_.Wait(true);
}
private:
// Create chains, allocating memory to them. Totally heuristic. Count
// bounds are upper bounds on the counts or not present.
void CreateChains(std::size_t remaining_mem, const std::vector<uint64_t> &count_bounds) {
std::vector<std::size_t> assignments;
assignments.reserve(config_.order);
// Start by assigning maximum memory usage (to be refined later).
for (std::size_t i = 0; i < count_bounds.size(); ++i) {
assignments.push_back(static_cast<std::size_t>(std::min(
static_cast<uint64_t>(remaining_mem),
count_bounds[i] * static_cast<uint64_t>(NGram::TotalSize(i + 1)))));
}
assignments.resize(config_.order, remaining_mem);
// Now we know how much memory everybody wants. How much will they get?
// Proportional to this.
std::vector<float> portions;
// Indices of orders that have yet to be assigned.
std::vector<std::size_t> unassigned;
for (std::size_t i = 0; i < config_.order; ++i) {
portions.push_back(static_cast<float>((i+1) * NGram::TotalSize(i+1)));
unassigned.push_back(i);
}
/*If somebody doesn't eat their full dinner, give it to the rest of the
* family. Then somebody else might not eat their full dinner etc. Ends
* when everybody unassigned is hungry.
*/
float sum;
bool found_more;
std::vector<std::size_t> block_count(config_.order);
do {
sum = 0.0;
for (std::size_t i = 0; i < unassigned.size(); ++i) {
sum += portions[unassigned[i]];
}
found_more = false;
// If the proportional assignment is more than needed, give it just what it needs.
for (std::vector<std::size_t>::iterator i = unassigned.begin(); i != unassigned.end();) {
if (assignments[*i] <= remaining_mem * (portions[*i] / sum)) {
remaining_mem -= assignments[*i];
block_count[*i] = 1;
i = unassigned.erase(i);
found_more = true;
} else {
++i;
}
}
} while (found_more);
for (std::vector<std::size_t>::iterator i = unassigned.begin(); i != unassigned.end(); ++i) {
assignments[*i] = remaining_mem * (portions[*i] / sum);
block_count[*i] = config_.block_count;
}
chains_.clear();
std::cerr << "Chain sizes:";
for (std::size_t i = 0; i < config_.order; ++i) {
std::cerr << ' ' << (i+1) << ":" << assignments[i];
chains_.push_back(util::stream::ChainConfig(NGram::TotalSize(i + 1), block_count[i], assignments[i]));
}
std::cerr << std::endl;
}
PipelineConfig config_;
Chains chains_;
// Often only unigrams, but sometimes all orders.
FixedArray<util::stream::FileBuffer> files_;
};
void CountText(int text_file /* input */, int vocab_file /* output */, Master &master, uint64_t &token_count, std::string &text_file_name) {
const PipelineConfig &config = master.Config();
std::cerr << "=== 1/5 Counting and sorting n-grams ===" << std::endl;
const std::size_t vocab_usage = CorpusCount::VocabUsage(config.vocab_estimate);
UTIL_THROW_IF(config.TotalMemory() < vocab_usage, util::Exception, "Vocab hash size estimate " << vocab_usage << " exceeds total memory " << config.TotalMemory());
std::size_t memory_for_chain =
// This much memory to work with after vocab hash table.
static_cast<float>(config.TotalMemory() - vocab_usage) /
// Solve for block size including the dedupe multiplier for one block.
(static_cast<float>(config.block_count) + CorpusCount::DedupeMultiplier(config.order)) *
// Chain likes memory expressed in terms of total memory.
static_cast<float>(config.block_count);
util::stream::Chain chain(util::stream::ChainConfig(NGram::TotalSize(config.order), config.block_count, memory_for_chain));
WordIndex type_count = config.vocab_estimate;
util::FilePiece text(text_file, NULL, &std::cerr);
text_file_name = text.FileName();
CorpusCount counter(text, vocab_file, token_count, type_count, chain.BlockSize() / chain.EntrySize());
chain >> boost::ref(counter);
util::stream::Sort<SuffixOrder, AddCombiner> sorter(chain, config.sort, SuffixOrder(config.order), AddCombiner());
chain.Wait(true);
std::cerr << "=== 2/5 Calculating and sorting adjusted counts ===" << std::endl;
master.InitForAdjust(sorter, type_count);
}
void InitialProbabilities(const std::vector<uint64_t> &counts, const std::vector<Discount> &discounts, Master &master, Sorts<SuffixOrder> &primary, FixedArray<util::stream::FileBuffer> &gammas) {
const PipelineConfig &config = master.Config();
Chains second(config.order);
{
Sorts<ContextOrder> sorts;
master.SetupSorts(sorts);
PrintStatistics(counts, discounts);
lm::ngram::ShowSizes(counts);
std::cerr << "=== 3/5 Calculating and sorting initial probabilities ===" << std::endl;
master.SortAndReadTwice(counts, sorts, second, config.initial_probs.adder_in);
}
Chains gamma_chains(config.order);
InitialProbabilities(config.initial_probs, discounts, master.MutableChains(), second, gamma_chains);
// Don't care about gamma for 0.
gamma_chains[0] >> util::stream::kRecycle;
gammas.Init(config.order - 1);
for (std::size_t i = 1; i < config.order; ++i) {
gammas.push_back(util::MakeTemp(config.TempPrefix()));
gamma_chains[i] >> gammas[i - 1].Sink();
}
// Has to be done here due to gamma_chains scope.
master.SetupSorts(primary);
}
void InterpolateProbabilities(const std::vector<uint64_t> &counts, Master &master, Sorts<SuffixOrder> &primary, FixedArray<util::stream::FileBuffer> &gammas) {
std::cerr << "=== 4/5 Calculating and writing order-interpolated probabilities ===" << std::endl;
const PipelineConfig &config = master.Config();
master.MaximumLazyInput(counts, primary);
Chains gamma_chains(config.order - 1);
util::stream::ChainConfig read_backoffs(config.read_backoffs);
read_backoffs.entry_size = sizeof(float);
for (std::size_t i = 0; i < config.order - 1; ++i) {
gamma_chains.push_back(read_backoffs);
gamma_chains.back() >> gammas[i].Source();
}
master >> Interpolate(counts[0], ChainPositions(gamma_chains));
gamma_chains >> util::stream::kRecycle;
master.BufferFinal(counts);
}
} // namespace
void Pipeline(PipelineConfig config, int text_file, int out_arpa) {
// Some fail-fast sanity checks.
if (config.sort.buffer_size * 4 > config.TotalMemory()) {
config.sort.buffer_size = config.TotalMemory() / 4;
std::cerr << "Warning: changing sort block size to " << config.sort.buffer_size << " bytes due to low total memory." << std::endl;
}
if (config.minimum_block < NGram::TotalSize(config.order)) {
config.minimum_block = NGram::TotalSize(config.order);
std::cerr << "Warning: raising minimum block to " << config.minimum_block << " to fit an ngram in every block." << std::endl;
}
UTIL_THROW_IF(config.sort.buffer_size < config.minimum_block, util::Exception, "Sort block size " << config.sort.buffer_size << " is below the minimum block size " << config.minimum_block << ".");
UTIL_THROW_IF(config.TotalMemory() < config.minimum_block * config.order * config.block_count, util::Exception,
"Not enough memory to fit " << (config.order * config.block_count) << " blocks with minimum size " << config.minimum_block << ". Increase memory to " << (config.minimum_block * config.order * config.block_count) << " bytes or decrease the minimum block size.");
UTIL_TIMER("(%w s) Total wall time elapsed\n");
Master master(config);
util::scoped_fd vocab_file(config.vocab_file.empty() ?
util::MakeTemp(config.TempPrefix()) :
util::CreateOrThrow(config.vocab_file.c_str()));
uint64_t token_count;
std::string text_file_name;
CountText(text_file, vocab_file.get(), master, token_count, text_file_name);
std::vector<uint64_t> counts;
std::vector<Discount> discounts;
master >> AdjustCounts(counts, discounts);
{
FixedArray<util::stream::FileBuffer> gammas;
Sorts<SuffixOrder> primary;
InitialProbabilities(counts, discounts, master, primary, gammas);
InterpolateProbabilities(counts, master, primary, gammas);
}
std::cerr << "=== 5/5 Writing ARPA model ===" << std::endl;
VocabReconstitute vocab(vocab_file.get());
UTIL_THROW_IF(vocab.Size() != counts[0], util::Exception, "Vocab words don't match up. Is there a null byte in the input?");
HeaderInfo header_info(text_file_name, token_count);
master >> PrintARPA(vocab, counts, (config.verbose_header ? &header_info : NULL), out_arpa) >> util::stream::kRecycle;
master.MutableChains().Wait(true);
}
}} // namespaces