mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-06 11:38:34 +03:00
1331 lines
50 KiB
C++
1331 lines
50 KiB
C++
// $Id$
|
|
// vim:tabstop=2
|
|
|
|
/***********************************************************************
|
|
Moses - factored phrase-based language decoder
|
|
Copyright (C) 2006 University of Edinburgh
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
***********************************************************************/
|
|
|
|
#include <string>
|
|
#include "util/check.hh"
|
|
#include "moses/TranslationModel/PhraseDictionaryTreeAdaptor.h"
|
|
#include "moses/TranslationModel/RuleTable/PhraseDictionaryOnDisk.h"
|
|
#include "moses/TranslationModel/PhraseDictionaryMemory.h"
|
|
#include "moses/TranslationModel/CompactPT/PhraseDictionaryCompact.h"
|
|
#include "moses/TranslationModel/PhraseDictionaryMultiModel.h"
|
|
#include "moses/TranslationModel/PhraseDictionaryMultiModelCounts.h"
|
|
#include "moses/TranslationModel/RuleTable/PhraseDictionaryALSuffixArray.h"
|
|
#include "moses/TranslationModel/PhraseDictionaryDynSuffixArray.h"
|
|
|
|
#include "DecodeStepTranslation.h"
|
|
#include "DecodeStepGeneration.h"
|
|
#include "GenerationDictionary.h"
|
|
#include "StaticData.h"
|
|
#include "Util.h"
|
|
#include "FactorCollection.h"
|
|
#include "Timer.h"
|
|
#include "LexicalReordering.h"
|
|
#include "SentenceStats.h"
|
|
#include "UserMessage.h"
|
|
#include "TranslationOption.h"
|
|
#include "DecodeGraph.h"
|
|
#include "InputFileStream.h"
|
|
#include "ScoreComponentCollection.h"
|
|
|
|
#include "moses/FF/BleuScoreFeature.h"
|
|
#include "moses/FF/TargetWordInsertionFeature.h"
|
|
#include "moses/FF/SourceWordDeletionFeature.h"
|
|
#include "moses/FF/GlobalLexicalModel.h"
|
|
#include "moses/FF/GlobalLexicalModelUnlimited.h"
|
|
#include "moses/FF/UnknownWordPenaltyProducer.h"
|
|
#include "moses/FF/WordTranslationFeature.h"
|
|
#include "moses/FF/TargetBigramFeature.h"
|
|
#include "moses/FF/TargetNgramFeature.h"
|
|
#include "moses/FF/PhraseBoundaryFeature.h"
|
|
#include "moses/FF/PhrasePairFeature.h"
|
|
#include "moses/FF/PhraseLengthFeature.h"
|
|
#include "moses/FF/DistortionScoreProducer.h"
|
|
#include "moses/FF/WordPenaltyProducer.h"
|
|
#include "moses/FF/InputFeature.h"
|
|
#include "moses/FF/PhrasePenalty.h"
|
|
#include "moses/FF/OSM-Feature/OpSequenceModel.h"
|
|
|
|
#include "LM/Ken.h"
|
|
#ifdef LM_IRST
|
|
#include "LM/IRST.h"
|
|
#endif
|
|
|
|
#ifdef LM_SRI
|
|
#include "LM/SRI.h"
|
|
#endif
|
|
|
|
#ifdef HAVE_SYNLM
|
|
#include "SyntacticLanguageModel.h"
|
|
#endif
|
|
|
|
#ifdef WITH_THREADS
|
|
#include <boost/thread.hpp>
|
|
#endif
|
|
|
|
using namespace std;
|
|
|
|
namespace Moses
|
|
{
|
|
|
|
StaticData StaticData::s_instance;
|
|
|
|
StaticData::StaticData()
|
|
:m_sourceStartPosMattersForRecombination(false)
|
|
,m_inputType(SentenceInput)
|
|
,m_wpProducer(NULL)
|
|
,m_unknownWordPenaltyProducer(NULL)
|
|
,m_inputFeature(NULL)
|
|
,m_detailedTranslationReportingFilePath()
|
|
,m_onlyDistinctNBest(false)
|
|
,m_needAlignmentInfo(false)
|
|
,m_factorDelimiter("|") // default delimiter between factors
|
|
,m_lmEnableOOVFeature(false)
|
|
,m_isAlwaysCreateDirectTranslationOption(false)
|
|
,m_currentWeightSetting("default")
|
|
{
|
|
m_xmlBrackets.first="<";
|
|
m_xmlBrackets.second=">";
|
|
|
|
// memory pools
|
|
Phrase::InitializeMemPool();
|
|
}
|
|
|
|
StaticData::~StaticData()
|
|
{
|
|
RemoveAllInColl(m_decodeGraphs);
|
|
|
|
typedef std::map<std::pair<std::pair<size_t, std::string>, Phrase>, std::pair<TranslationOptionList*,clock_t> > Coll;
|
|
Coll::iterator iter;
|
|
for (iter = m_transOptCache.begin(); iter != m_transOptCache.end(); ++iter) {
|
|
std::pair<TranslationOptionList*,clock_t> &valuePair =iter->second;
|
|
TranslationOptionList *transOptList = valuePair.first;
|
|
delete transOptList;
|
|
}
|
|
|
|
/*
|
|
const std::vector<FeatureFunction*> &producers = FeatureFunction::GetFeatureFunctions();
|
|
for(size_t i=0;i<producers.size();++i) {
|
|
FeatureFunction *ff = producers[i];
|
|
delete ff;
|
|
}
|
|
*/
|
|
|
|
// memory pools
|
|
Phrase::FinalizeMemPool();
|
|
}
|
|
|
|
bool StaticData::LoadDataStatic(Parameter *parameter, const std::string &execPath)
|
|
{
|
|
s_instance.SetExecPath(execPath);
|
|
return s_instance.LoadData(parameter);
|
|
}
|
|
|
|
bool StaticData::LoadData(Parameter *parameter)
|
|
{
|
|
ResetUserTime();
|
|
m_parameter = parameter;
|
|
|
|
// verbose level
|
|
m_verboseLevel = 1;
|
|
if (m_parameter->GetParam("verbose").size() == 1) {
|
|
m_verboseLevel = Scan<size_t>( m_parameter->GetParam("verbose")[0]);
|
|
}
|
|
|
|
m_parsingAlgorithm = (m_parameter->GetParam("parsing-algorithm").size() > 0) ?
|
|
(ParsingAlgorithm) Scan<size_t>(m_parameter->GetParam("parsing-algorithm")[0]) : ParseCYKPlus;
|
|
|
|
// to cube or not to cube
|
|
m_searchAlgorithm = (m_parameter->GetParam("search-algorithm").size() > 0) ?
|
|
(SearchAlgorithm) Scan<size_t>(m_parameter->GetParam("search-algorithm")[0]) : Normal;
|
|
|
|
if (IsChart())
|
|
LoadChartDecodingParameters();
|
|
|
|
// input type has to be specified BEFORE loading the phrase tables!
|
|
if(m_parameter->GetParam("inputtype").size())
|
|
m_inputType= (InputTypeEnum) Scan<int>(m_parameter->GetParam("inputtype")[0]);
|
|
std::string s_it = "text input";
|
|
if (m_inputType == 1) {
|
|
s_it = "confusion net";
|
|
}
|
|
if (m_inputType == 2) {
|
|
s_it = "word lattice";
|
|
}
|
|
VERBOSE(2,"input type is: "<<s_it<<"\n");
|
|
|
|
if(m_parameter->GetParam("recover-input-path").size()) {
|
|
m_recoverPath = Scan<bool>(m_parameter->GetParam("recover-input-path")[0]);
|
|
if (m_recoverPath && m_inputType == SentenceInput) {
|
|
TRACE_ERR("--recover-input-path should only be used with confusion net or word lattice input!\n");
|
|
m_recoverPath = false;
|
|
}
|
|
}
|
|
|
|
// factor delimiter
|
|
if (m_parameter->GetParam("factor-delimiter").size() > 0) {
|
|
m_factorDelimiter = m_parameter->GetParam("factor-delimiter")[0];
|
|
}
|
|
|
|
SetBooleanParameter( &m_continuePartialTranslation, "continue-partial-translation", false );
|
|
SetBooleanParameter( &m_outputHypoScore, "output-hypo-score", false );
|
|
|
|
//word-to-word alignment
|
|
// alignments
|
|
SetBooleanParameter( &m_PrintAlignmentInfo, "print-alignment-info", false );
|
|
if (m_PrintAlignmentInfo) {
|
|
m_needAlignmentInfo = true;
|
|
}
|
|
|
|
if(m_parameter->GetParam("sort-word-alignment").size()) {
|
|
m_wordAlignmentSort = (WordAlignmentSort) Scan<size_t>(m_parameter->GetParam("sort-word-alignment")[0]);
|
|
}
|
|
|
|
SetBooleanParameter( &m_PrintAlignmentInfoNbest, "print-alignment-info-in-n-best", false );
|
|
if (m_PrintAlignmentInfoNbest) {
|
|
m_needAlignmentInfo = true;
|
|
}
|
|
|
|
if (m_parameter->GetParam("alignment-output-file").size() > 0) {
|
|
m_alignmentOutputFile = Scan<std::string>(m_parameter->GetParam("alignment-output-file")[0]);
|
|
m_needAlignmentInfo = true;
|
|
}
|
|
|
|
// n-best
|
|
if (m_parameter->GetParam("n-best-list").size() >= 2) {
|
|
m_nBestFilePath = m_parameter->GetParam("n-best-list")[0];
|
|
m_nBestSize = Scan<size_t>( m_parameter->GetParam("n-best-list")[1] );
|
|
m_onlyDistinctNBest=(m_parameter->GetParam("n-best-list").size()>2 && m_parameter->GetParam("n-best-list")[2]=="distinct");
|
|
} else if (m_parameter->GetParam("n-best-list").size() == 1) {
|
|
UserMessage::Add(string("wrong format for switch -n-best-list file size"));
|
|
return false;
|
|
} else {
|
|
m_nBestSize = 0;
|
|
}
|
|
if (m_parameter->GetParam("n-best-factor").size() > 0) {
|
|
m_nBestFactor = Scan<size_t>( m_parameter->GetParam("n-best-factor")[0]);
|
|
} else {
|
|
m_nBestFactor = 20;
|
|
}
|
|
|
|
//lattice samples
|
|
if (m_parameter->GetParam("lattice-samples").size() ==2 ) {
|
|
m_latticeSamplesFilePath = m_parameter->GetParam("lattice-samples")[0];
|
|
m_latticeSamplesSize = Scan<size_t>(m_parameter->GetParam("lattice-samples")[1]);
|
|
} else if (m_parameter->GetParam("lattice-samples").size() != 0 ) {
|
|
UserMessage::Add(string("wrong format for switch -lattice-samples file size"));
|
|
return false;
|
|
} else {
|
|
m_latticeSamplesSize = 0;
|
|
}
|
|
|
|
// word graph
|
|
if (m_parameter->GetParam("output-word-graph").size() == 2)
|
|
m_outputWordGraph = true;
|
|
else
|
|
m_outputWordGraph = false;
|
|
|
|
// search graph
|
|
if (m_parameter->GetParam("output-search-graph").size() > 0) {
|
|
if (m_parameter->GetParam("output-search-graph").size() != 1) {
|
|
UserMessage::Add(string("ERROR: wrong format for switch -output-search-graph file"));
|
|
return false;
|
|
}
|
|
m_outputSearchGraph = true;
|
|
}
|
|
// ... in extended format
|
|
else if (m_parameter->GetParam("output-search-graph-extended").size() > 0) {
|
|
if (m_parameter->GetParam("output-search-graph-extended").size() != 1) {
|
|
UserMessage::Add(string("ERROR: wrong format for switch -output-search-graph-extended file"));
|
|
return false;
|
|
}
|
|
m_outputSearchGraph = true;
|
|
m_outputSearchGraphExtended = true;
|
|
} else {
|
|
m_outputSearchGraph = false;
|
|
}
|
|
if (m_parameter->GetParam("output-search-graph-slf").size() > 0) {
|
|
m_outputSearchGraphSLF = true;
|
|
} else {
|
|
m_outputSearchGraphSLF = false;
|
|
}
|
|
if (m_parameter->GetParam("output-search-graph-hypergraph").size() > 0) {
|
|
m_outputSearchGraphHypergraph = true;
|
|
} else {
|
|
m_outputSearchGraphHypergraph = false;
|
|
}
|
|
#ifdef HAVE_PROTOBUF
|
|
if (m_parameter->GetParam("output-search-graph-pb").size() > 0) {
|
|
if (m_parameter->GetParam("output-search-graph-pb").size() != 1) {
|
|
UserMessage::Add(string("ERROR: wrong format for switch -output-search-graph-pb path"));
|
|
return false;
|
|
}
|
|
m_outputSearchGraphPB = true;
|
|
} else
|
|
m_outputSearchGraphPB = false;
|
|
#endif
|
|
SetBooleanParameter( &m_unprunedSearchGraph, "unpruned-search-graph", false );
|
|
SetBooleanParameter( &m_includeLHSInSearchGraph, "include-lhs-in-search-graph", false );
|
|
|
|
if (m_parameter->isParamSpecified("output-unknowns")) {
|
|
|
|
if (m_parameter->GetParam("output-unknowns").size() == 1) {
|
|
m_outputUnknownsFile =Scan<string>(m_parameter->GetParam("output-unknowns")[0]);
|
|
} else {
|
|
UserMessage::Add(string("need to specify exactly one file name for unknowns"));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// include feature names in the n-best list
|
|
SetBooleanParameter( &m_labeledNBestList, "labeled-n-best-list", true );
|
|
|
|
// include word alignment in the n-best list
|
|
SetBooleanParameter( &m_nBestIncludesSegmentation, "include-segmentation-in-n-best", false );
|
|
|
|
// printing source phrase spans
|
|
SetBooleanParameter( &m_reportSegmentation, "report-segmentation", false );
|
|
|
|
// print all factors of output translations
|
|
SetBooleanParameter( &m_reportAllFactors, "report-all-factors", false );
|
|
|
|
// print all factors of output translations
|
|
SetBooleanParameter( &m_reportAllFactorsNBest, "report-all-factors-in-n-best", false );
|
|
|
|
// caching of translation options
|
|
if (m_inputType == SentenceInput) {
|
|
SetBooleanParameter( &m_useTransOptCache, "use-persistent-cache", true );
|
|
m_transOptCacheMaxSize = (m_parameter->GetParam("persistent-cache-size").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("persistent-cache-size")[0]) : DEFAULT_MAX_TRANS_OPT_CACHE_SIZE;
|
|
} else {
|
|
m_useTransOptCache = false;
|
|
}
|
|
|
|
//input factors
|
|
const vector<string> &inputFactorVector = m_parameter->GetParam("input-factors");
|
|
for(size_t i=0; i<inputFactorVector.size(); i++) {
|
|
m_inputFactorOrder.push_back(Scan<FactorType>(inputFactorVector[i]));
|
|
}
|
|
if(m_inputFactorOrder.empty()) {
|
|
UserMessage::Add(string("no input factor specified in config file"));
|
|
return false;
|
|
}
|
|
|
|
//output factors
|
|
const vector<string> &outputFactorVector = m_parameter->GetParam("output-factors");
|
|
for(size_t i=0; i<outputFactorVector.size(); i++) {
|
|
m_outputFactorOrder.push_back(Scan<FactorType>(outputFactorVector[i]));
|
|
}
|
|
if(m_outputFactorOrder.empty()) {
|
|
// default. output factor 0
|
|
m_outputFactorOrder.push_back(0);
|
|
}
|
|
|
|
//source word deletion
|
|
SetBooleanParameter( &m_wordDeletionEnabled, "phrase-drop-allowed", false );
|
|
|
|
//Disable discarding
|
|
SetBooleanParameter(&m_disableDiscarding, "disable-discarding", false);
|
|
|
|
//Print All Derivations
|
|
SetBooleanParameter( &m_printAllDerivations , "print-all-derivations", false );
|
|
|
|
// additional output
|
|
if (m_parameter->isParamSpecified("translation-details")) {
|
|
const vector<string> &args = m_parameter->GetParam("translation-details");
|
|
if (args.size() == 1) {
|
|
m_detailedTranslationReportingFilePath = args[0];
|
|
} else {
|
|
UserMessage::Add(string("the translation-details option requires exactly one filename argument"));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// reordering constraints
|
|
m_maxDistortion = (m_parameter->GetParam("distortion-limit").size() > 0) ?
|
|
Scan<int>(m_parameter->GetParam("distortion-limit")[0])
|
|
: -1;
|
|
SetBooleanParameter( &m_reorderingConstraint, "monotone-at-punctuation", false );
|
|
|
|
// settings for pruning
|
|
m_maxHypoStackSize = (m_parameter->GetParam("stack").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("stack")[0]) : DEFAULT_MAX_HYPOSTACK_SIZE;
|
|
|
|
m_minHypoStackDiversity = 0;
|
|
if (m_parameter->GetParam("stack-diversity").size() > 0) {
|
|
if (m_maxDistortion > 15) {
|
|
UserMessage::Add("stack diversity > 0 is not allowed for distortion limits larger than 15");
|
|
return false;
|
|
}
|
|
if (m_inputType == WordLatticeInput) {
|
|
UserMessage::Add("stack diversity > 0 is not allowed for lattice input");
|
|
return false;
|
|
}
|
|
m_minHypoStackDiversity = Scan<size_t>(m_parameter->GetParam("stack-diversity")[0]);
|
|
}
|
|
|
|
m_beamWidth = (m_parameter->GetParam("beam-threshold").size() > 0) ?
|
|
TransformScore(Scan<float>(m_parameter->GetParam("beam-threshold")[0]))
|
|
: TransformScore(DEFAULT_BEAM_WIDTH);
|
|
m_earlyDiscardingThreshold = (m_parameter->GetParam("early-discarding-threshold").size() > 0) ?
|
|
TransformScore(Scan<float>(m_parameter->GetParam("early-discarding-threshold")[0]))
|
|
: TransformScore(DEFAULT_EARLY_DISCARDING_THRESHOLD);
|
|
m_translationOptionThreshold = (m_parameter->GetParam("translation-option-threshold").size() > 0) ?
|
|
TransformScore(Scan<float>(m_parameter->GetParam("translation-option-threshold")[0]))
|
|
: TransformScore(DEFAULT_TRANSLATION_OPTION_THRESHOLD);
|
|
|
|
m_maxNoTransOptPerCoverage = (m_parameter->GetParam("max-trans-opt-per-coverage").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("max-trans-opt-per-coverage")[0]) : DEFAULT_MAX_TRANS_OPT_SIZE;
|
|
|
|
m_maxNoPartTransOpt = (m_parameter->GetParam("max-partial-trans-opt").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("max-partial-trans-opt")[0]) : DEFAULT_MAX_PART_TRANS_OPT_SIZE;
|
|
|
|
m_maxPhraseLength = (m_parameter->GetParam("max-phrase-length").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("max-phrase-length")[0]) : DEFAULT_MAX_PHRASE_LENGTH;
|
|
|
|
m_cubePruningPopLimit = (m_parameter->GetParam("cube-pruning-pop-limit").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("cube-pruning-pop-limit")[0]) : DEFAULT_CUBE_PRUNING_POP_LIMIT;
|
|
|
|
m_cubePruningDiversity = (m_parameter->GetParam("cube-pruning-diversity").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("cube-pruning-diversity")[0]) : DEFAULT_CUBE_PRUNING_DIVERSITY;
|
|
|
|
SetBooleanParameter(&m_cubePruningLazyScoring, "cube-pruning-lazy-scoring", false);
|
|
|
|
// early distortion cost
|
|
SetBooleanParameter( &m_useEarlyDistortionCost, "early-distortion-cost", false );
|
|
|
|
// unknown word processing
|
|
SetBooleanParameter( &m_dropUnknown, "drop-unknown", false );
|
|
|
|
SetBooleanParameter( &m_lmEnableOOVFeature, "lmodel-oov-feature", false);
|
|
|
|
// minimum Bayes risk decoding
|
|
SetBooleanParameter( &m_mbr, "minimum-bayes-risk", false );
|
|
m_mbrSize = (m_parameter->GetParam("mbr-size").size() > 0) ?
|
|
Scan<size_t>(m_parameter->GetParam("mbr-size")[0]) : 200;
|
|
m_mbrScale = (m_parameter->GetParam("mbr-scale").size() > 0) ?
|
|
Scan<float>(m_parameter->GetParam("mbr-scale")[0]) : 1.0f;
|
|
|
|
//lattice mbr
|
|
SetBooleanParameter( &m_useLatticeMBR, "lminimum-bayes-risk", false );
|
|
if (m_useLatticeMBR && m_mbr) {
|
|
cerr << "Errror: Cannot use both n-best mbr and lattice mbr together" << endl;
|
|
exit(1);
|
|
}
|
|
|
|
//mira training
|
|
SetBooleanParameter( &m_mira, "mira", false );
|
|
|
|
// lattice MBR
|
|
if (m_useLatticeMBR) m_mbr = true;
|
|
|
|
m_lmbrPruning = (m_parameter->GetParam("lmbr-pruning-factor").size() > 0) ?
|
|
Scan<size_t>(m_parameter->GetParam("lmbr-pruning-factor")[0]) : 30;
|
|
m_lmbrThetas = Scan<float>(m_parameter->GetParam("lmbr-thetas"));
|
|
SetBooleanParameter( &m_useLatticeHypSetForLatticeMBR, "lattice-hypo-set", false );
|
|
m_lmbrPrecision = (m_parameter->GetParam("lmbr-p").size() > 0) ?
|
|
Scan<float>(m_parameter->GetParam("lmbr-p")[0]) : 0.8f;
|
|
m_lmbrPRatio = (m_parameter->GetParam("lmbr-r").size() > 0) ?
|
|
Scan<float>(m_parameter->GetParam("lmbr-r")[0]) : 0.6f;
|
|
m_lmbrMapWeight = (m_parameter->GetParam("lmbr-map-weight").size() >0) ?
|
|
Scan<float>(m_parameter->GetParam("lmbr-map-weight")[0]) : 0.0f;
|
|
|
|
//consensus decoding
|
|
SetBooleanParameter( &m_useConsensusDecoding, "consensus-decoding", false );
|
|
if (m_useConsensusDecoding && m_mbr) {
|
|
cerr<< "Error: Cannot use consensus decoding together with mbr" << endl;
|
|
exit(1);
|
|
}
|
|
if (m_useConsensusDecoding) m_mbr=true;
|
|
|
|
// Compact phrase table and reordering model
|
|
SetBooleanParameter( &m_minphrMemory, "minphr-memory", false );
|
|
SetBooleanParameter( &m_minlexrMemory, "minlexr-memory", false );
|
|
|
|
m_timeout_threshold = (m_parameter->GetParam("time-out").size() > 0) ?
|
|
Scan<size_t>(m_parameter->GetParam("time-out")[0]) : -1;
|
|
m_timeout = (GetTimeoutThreshold() == (size_t)-1) ? false : true;
|
|
|
|
|
|
m_lmcache_cleanup_threshold = (m_parameter->GetParam("clean-lm-cache").size() > 0) ?
|
|
Scan<size_t>(m_parameter->GetParam("clean-lm-cache")[0]) : 1;
|
|
|
|
m_threadCount = 1;
|
|
const std::vector<std::string> &threadInfo = m_parameter->GetParam("threads");
|
|
if (!threadInfo.empty()) {
|
|
if (threadInfo[0] == "all") {
|
|
#ifdef WITH_THREADS
|
|
m_threadCount = boost::thread::hardware_concurrency();
|
|
if (!m_threadCount) {
|
|
UserMessage::Add("-threads all specified but Boost doesn't know how many cores there are");
|
|
return false;
|
|
}
|
|
#else
|
|
UserMessage::Add("-threads all specified but moses not built with thread support");
|
|
return false;
|
|
#endif
|
|
} else {
|
|
m_threadCount = Scan<int>(threadInfo[0]);
|
|
if (m_threadCount < 1) {
|
|
UserMessage::Add("Specify at least one thread.");
|
|
return false;
|
|
}
|
|
#ifndef WITH_THREADS
|
|
if (m_threadCount > 1) {
|
|
UserMessage::Add(std::string("Error: Thread count of ") + threadInfo[0] + " but moses not built with thread support");
|
|
return false;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
m_startTranslationId = (m_parameter->GetParam("start-translation-id").size() > 0) ?
|
|
Scan<long>(m_parameter->GetParam("start-translation-id")[0]) : 0;
|
|
|
|
// Read in constraint decoding file, if provided
|
|
if(m_parameter->GetParam("constraint").size()) {
|
|
if (m_parameter->GetParam("search-algorithm").size() > 0
|
|
&& Scan<size_t>(m_parameter->GetParam("search-algorithm")[0]) != 0) {
|
|
cerr << "Can use -constraint only with stack-based search (-search-algorithm 0)" << endl;
|
|
exit(1);
|
|
}
|
|
m_constraintFileName = m_parameter->GetParam("constraint")[0];
|
|
|
|
InputFileStream constraintFile(m_constraintFileName);
|
|
|
|
std::string line;
|
|
|
|
long sentenceID = GetStartTranslationId() - 1;
|
|
while (getline(constraintFile, line)) {
|
|
vector<string> vecStr = Tokenize(line, "\t");
|
|
|
|
if (vecStr.size() == 1) {
|
|
sentenceID++;
|
|
Phrase phrase(0);
|
|
phrase.CreateFromString(Output, GetOutputFactorOrder(), vecStr[0], GetFactorDelimiter(), NULL);
|
|
m_constraints.insert(make_pair(sentenceID,phrase));
|
|
} else if (vecStr.size() == 2) {
|
|
sentenceID = Scan<long>(vecStr[0]);
|
|
Phrase phrase(0);
|
|
phrase.CreateFromString(Output, GetOutputFactorOrder(), vecStr[1], GetFactorDelimiter(), NULL);
|
|
m_constraints.insert(make_pair(sentenceID,phrase));
|
|
} else {
|
|
CHECK(false);
|
|
}
|
|
}
|
|
}
|
|
|
|
// use of xml in input
|
|
if (m_parameter->GetParam("xml-input").size() == 0) m_xmlInputType = XmlPassThrough;
|
|
else if (m_parameter->GetParam("xml-input")[0]=="exclusive") m_xmlInputType = XmlExclusive;
|
|
else if (m_parameter->GetParam("xml-input")[0]=="inclusive") m_xmlInputType = XmlInclusive;
|
|
else if (m_parameter->GetParam("xml-input")[0]=="ignore") m_xmlInputType = XmlIgnore;
|
|
else if (m_parameter->GetParam("xml-input")[0]=="pass-through") m_xmlInputType = XmlPassThrough;
|
|
else {
|
|
UserMessage::Add("invalid xml-input value, must be pass-through, exclusive, inclusive, or ignore");
|
|
return false;
|
|
}
|
|
|
|
// specify XML tags opening and closing brackets for XML option
|
|
if (m_parameter->GetParam("xml-brackets").size() > 0) {
|
|
std::vector<std::string> brackets = Tokenize(m_parameter->GetParam("xml-brackets")[0]);
|
|
if(brackets.size()!=2) {
|
|
cerr << "invalid xml-brackets value, must specify exactly 2 blank-delimited strings for XML tags opening and closing brackets" << endl;
|
|
exit(1);
|
|
}
|
|
m_xmlBrackets.first= brackets[0];
|
|
m_xmlBrackets.second=brackets[1];
|
|
cerr << "XML tags opening and closing brackets for XML input are: " << m_xmlBrackets.first << " and " << m_xmlBrackets.second << endl;
|
|
}
|
|
|
|
// all features
|
|
map<string, int> featureIndexMap;
|
|
|
|
const vector<string> &features = m_parameter->GetParam("feature");
|
|
for (size_t i = 0; i < features.size(); ++i) {
|
|
const string &line = Trim(features[i]);
|
|
cerr << "line=" << line << endl;
|
|
if (line.empty())
|
|
continue;
|
|
|
|
vector<string> toks = Tokenize(line);
|
|
|
|
const string &feature = toks[0];
|
|
//int featureIndex = GetFeatureIndex(featureIndexMap, feature);
|
|
|
|
if (feature == "GlobalLexicalModel") {
|
|
GlobalLexicalModel *model = new GlobalLexicalModel(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "GlobalLexicalModelUnlimited") {
|
|
GlobalLexicalModelUnlimited *model = NULL; //new GlobalLexicalModelUnlimited(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "SourceWordDeletionFeature") {
|
|
SourceWordDeletionFeature *model = new SourceWordDeletionFeature(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
//SetWeights(model, weights);
|
|
} else if (feature == "TargetWordInsertionFeature") {
|
|
TargetWordInsertionFeature *model = new TargetWordInsertionFeature(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
//SetWeights(model, weights);
|
|
} else if (feature == "PhraseBoundaryFeature") {
|
|
PhraseBoundaryFeature *model = new PhraseBoundaryFeature(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
//SetWeights(model, weights);
|
|
} else if (feature == "PhraseLengthFeature") {
|
|
PhraseLengthFeature *model = new PhraseLengthFeature(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
//SetWeights(model, weights);
|
|
} else if (feature == "WordTranslationFeature") {
|
|
WordTranslationFeature *model = new WordTranslationFeature(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
//SetWeights(model, weights);
|
|
} else if (feature == "TargetBigramFeature") {
|
|
TargetBigramFeature *model = new TargetBigramFeature(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
//SetWeights(model, weights);
|
|
} else if (feature == "TargetNgramFeature") {
|
|
TargetNgramFeature *model = new TargetNgramFeature(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
//SetWeights(model, weights);
|
|
} else if (feature == "PhrasePairFeature") {
|
|
PhrasePairFeature *model = new PhrasePairFeature(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
//SetWeights(model, weights);
|
|
} else if (feature == "LexicalReordering") {
|
|
LexicalReordering *model = new LexicalReordering(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "KENLM") {
|
|
LanguageModel *model = ConstructKenLM(feature, line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
}
|
|
#ifdef LM_IRST
|
|
else if (feature == "IRSTLM") {
|
|
LanguageModelIRST *model = new LanguageModelIRST(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
}
|
|
#endif
|
|
#ifdef LM_SRI
|
|
else if (feature == "SRILM") {
|
|
LanguageModelSRI *model = new LanguageModelSRI(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
}
|
|
#endif
|
|
else if (feature == "Generation") {
|
|
GenerationDictionary *model = new GenerationDictionary(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "BleuScoreFeature") {
|
|
BleuScoreFeature *model = new BleuScoreFeature(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "Distortion") {
|
|
DistortionScoreProducer *model = new DistortionScoreProducer(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "WordPenalty") {
|
|
WordPenaltyProducer *model = new WordPenaltyProducer(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "UnknownWordPenalty") {
|
|
UnknownWordPenaltyProducer *model = new UnknownWordPenaltyProducer(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
if (weights.size() == 0)
|
|
weights.push_back(1.0f);
|
|
SetWeights(model, weights);
|
|
} else if (feature == "InputFeature") {
|
|
InputFeature *model = new InputFeature(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
|
|
} else if (feature == "PhraseDictionaryBinary") {
|
|
PhraseDictionaryTreeAdaptor* model = new PhraseDictionaryTreeAdaptor(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "PhraseDictionaryOnDisk") {
|
|
PhraseDictionaryOnDisk* model = new PhraseDictionaryOnDisk(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "PhraseDictionaryMemory") {
|
|
PhraseDictionaryMemory* model = new PhraseDictionaryMemory(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "PhraseDictionaryCompact") {
|
|
PhraseDictionaryCompact* model = new PhraseDictionaryCompact(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "PhraseDictionaryMultiModel") {
|
|
PhraseDictionaryMultiModel* model = new PhraseDictionaryMultiModel(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "PhraseDictionaryMultiModelCounts") {
|
|
PhraseDictionaryMultiModelCounts* model = new PhraseDictionaryMultiModelCounts(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "PhraseDictionaryALSuffixArray") {
|
|
PhraseDictionaryALSuffixArray* model = new PhraseDictionaryALSuffixArray(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "PhraseDictionaryDynSuffixArray") {
|
|
PhraseDictionaryDynSuffixArray* model = new PhraseDictionaryDynSuffixArray(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "OpSequenceModel") {
|
|
OpSequenceModel* model = new OpSequenceModel(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
} else if (feature == "PhrasePenalty") {
|
|
PhrasePenalty* model = new PhrasePenalty(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
}
|
|
|
|
#ifdef HAVE_SYNLM
|
|
else if (feature == "SyntacticLanguageModel") {
|
|
SyntacticLanguageModel *model = new SyntacticLanguageModel(line);
|
|
vector<float> weights = m_parameter->GetWeights(model->GetScoreProducerDescription());
|
|
SetWeights(model, weights);
|
|
}
|
|
#endif
|
|
else {
|
|
UserMessage::Add("Unknown feature function:" + feature);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
OverrideFeatures();
|
|
|
|
LoadFeatureFunctions();
|
|
|
|
if (!LoadDecodeGraphs()) return false;
|
|
|
|
if (!CheckWeights()) {
|
|
return false;
|
|
}
|
|
|
|
//Add any other features here.
|
|
|
|
//Load extra feature weights
|
|
vector<string> extraWeightConfig = m_parameter->GetParam("weight-file");
|
|
if (extraWeightConfig.size()) {
|
|
if (extraWeightConfig.size() != 1) {
|
|
UserMessage::Add("One argument should be supplied for weight-file");
|
|
return false;
|
|
}
|
|
ScoreComponentCollection extraWeights;
|
|
if (!extraWeights.Load(extraWeightConfig[0])) {
|
|
UserMessage::Add("Unable to load weights from " + extraWeightConfig[0]);
|
|
return false;
|
|
}
|
|
|
|
m_allWeights.PlusEquals(extraWeights);
|
|
}
|
|
|
|
// alternate weight settings
|
|
if (m_parameter->GetParam("alternate-weight-setting").size() > 0) {
|
|
if (!LoadAlternateWeightSettings()) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void StaticData::SetBooleanParameter( bool *parameter, string parameterName, bool defaultValue )
|
|
{
|
|
// default value if nothing is specified
|
|
*parameter = defaultValue;
|
|
if (! m_parameter->isParamSpecified( parameterName ) ) {
|
|
return;
|
|
}
|
|
|
|
// if parameter is just specified as, e.g. "-parameter" set it true
|
|
if (m_parameter->GetParam( parameterName ).size() == 0) {
|
|
*parameter = true;
|
|
}
|
|
|
|
// if paramter is specified "-parameter true" or "-parameter false"
|
|
else if (m_parameter->GetParam( parameterName ).size() == 1) {
|
|
*parameter = Scan<bool>( m_parameter->GetParam( parameterName )[0]);
|
|
}
|
|
}
|
|
|
|
void StaticData::SetWeight(const FeatureFunction* sp, float weight)
|
|
{
|
|
m_allWeights.Resize();
|
|
m_allWeights.Assign(sp,weight);
|
|
}
|
|
|
|
void StaticData::SetWeights(const FeatureFunction* sp, const std::vector<float>& weights)
|
|
{
|
|
m_allWeights.Resize();
|
|
m_allWeights.Assign(sp,weights);
|
|
}
|
|
|
|
void StaticData::LoadNonTerminals()
|
|
{
|
|
string defaultNonTerminals;
|
|
|
|
if (m_parameter->GetParam("non-terminals").size() == 0) {
|
|
defaultNonTerminals = "X";
|
|
} else {
|
|
vector<std::string> tokens = Tokenize(m_parameter->GetParam("non-terminals")[0]);
|
|
defaultNonTerminals = tokens[0];
|
|
}
|
|
|
|
FactorCollection &factorCollection = FactorCollection::Instance();
|
|
|
|
m_inputDefaultNonTerminal.SetIsNonTerminal(true);
|
|
const Factor *sourceFactor = factorCollection.AddFactor(Input, 0, defaultNonTerminals);
|
|
m_inputDefaultNonTerminal.SetFactor(0, sourceFactor);
|
|
|
|
m_outputDefaultNonTerminal.SetIsNonTerminal(true);
|
|
const Factor *targetFactor = factorCollection.AddFactor(Output, 0, defaultNonTerminals);
|
|
m_outputDefaultNonTerminal.SetFactor(0, targetFactor);
|
|
|
|
// for unknwon words
|
|
if (m_parameter->GetParam("unknown-lhs").size() == 0) {
|
|
UnknownLHSEntry entry(defaultNonTerminals, 0.0f);
|
|
m_unknownLHS.push_back(entry);
|
|
} else {
|
|
const string &filePath = m_parameter->GetParam("unknown-lhs")[0];
|
|
|
|
InputFileStream inStream(filePath);
|
|
string line;
|
|
while(getline(inStream, line)) {
|
|
vector<string> tokens = Tokenize(line);
|
|
CHECK(tokens.size() == 2);
|
|
UnknownLHSEntry entry(tokens[0], Scan<float>(tokens[1]));
|
|
m_unknownLHS.push_back(entry);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void StaticData::LoadChartDecodingParameters()
|
|
{
|
|
LoadNonTerminals();
|
|
|
|
// source label overlap
|
|
if (m_parameter->GetParam("source-label-overlap").size() > 0) {
|
|
m_sourceLabelOverlap = (SourceLabelOverlap) Scan<int>(m_parameter->GetParam("source-label-overlap")[0]);
|
|
} else {
|
|
m_sourceLabelOverlap = SourceLabelOverlapAdd;
|
|
}
|
|
|
|
m_ruleLimit = (m_parameter->GetParam("rule-limit").size() > 0)
|
|
? Scan<size_t>(m_parameter->GetParam("rule-limit")[0]) : DEFAULT_MAX_TRANS_OPT_SIZE;
|
|
}
|
|
|
|
bool StaticData::LoadDecodeGraphs()
|
|
{
|
|
const vector<string> &mappingVector = m_parameter->GetParam("mapping");
|
|
const vector<size_t> &maxChartSpans = Scan<size_t>(m_parameter->GetParam("max-chart-span"));
|
|
|
|
const std::vector<FeatureFunction*> *featuresRemaining = &FeatureFunction::GetFeatureFunctions();
|
|
DecodeStep *prev = 0;
|
|
size_t prevDecodeGraphInd = 0;
|
|
|
|
for(size_t i=0; i<mappingVector.size(); i++) {
|
|
vector<string> token = Tokenize(mappingVector[i]);
|
|
size_t decodeGraphInd;
|
|
DecodeType decodeType;
|
|
size_t index;
|
|
if (token.size() == 2) {
|
|
decodeGraphInd = 0;
|
|
decodeType = token[0] == "T" ? Translate : Generate;
|
|
index = Scan<size_t>(token[1]);
|
|
} else if (token.size() == 3) {
|
|
// For specifying multiple translation model
|
|
decodeGraphInd = Scan<size_t>(token[0]);
|
|
//the vectorList index can only increment by one
|
|
CHECK(decodeGraphInd == prevDecodeGraphInd || decodeGraphInd == prevDecodeGraphInd + 1);
|
|
if (decodeGraphInd > prevDecodeGraphInd) {
|
|
prev = NULL;
|
|
}
|
|
|
|
if (prevDecodeGraphInd < decodeGraphInd) {
|
|
featuresRemaining = &FeatureFunction::GetFeatureFunctions();
|
|
}
|
|
|
|
decodeType = token[1] == "T" ? Translate : Generate;
|
|
index = Scan<size_t>(token[2]);
|
|
} else {
|
|
UserMessage::Add("Malformed mapping!");
|
|
CHECK(false);
|
|
}
|
|
|
|
DecodeStep* decodeStep = NULL;
|
|
switch (decodeType) {
|
|
case Translate:
|
|
if(index>=m_phraseDictionary.size()) {
|
|
stringstream strme;
|
|
strme << "No phrase dictionary with index "
|
|
<< index << " available!";
|
|
UserMessage::Add(strme.str());
|
|
CHECK(false);
|
|
}
|
|
decodeStep = new DecodeStepTranslation(m_phraseDictionary[index], prev, *featuresRemaining);
|
|
break;
|
|
case Generate:
|
|
if(index>=m_generationDictionary.size()) {
|
|
stringstream strme;
|
|
strme << "No generation dictionary with index "
|
|
<< index << " available!";
|
|
UserMessage::Add(strme.str());
|
|
CHECK(false);
|
|
}
|
|
decodeStep = new DecodeStepGeneration(m_generationDictionary[index], prev, *featuresRemaining);
|
|
break;
|
|
case InsertNullFertilityWord:
|
|
CHECK(!"Please implement NullFertilityInsertion.");
|
|
break;
|
|
}
|
|
|
|
featuresRemaining = &decodeStep->GetFeaturesRemaining();
|
|
|
|
CHECK(decodeStep);
|
|
if (m_decodeGraphs.size() < decodeGraphInd + 1) {
|
|
DecodeGraph *decodeGraph;
|
|
if (IsChart()) {
|
|
size_t maxChartSpan = (decodeGraphInd < maxChartSpans.size()) ? maxChartSpans[decodeGraphInd] : DEFAULT_MAX_CHART_SPAN;
|
|
cerr << "max-chart-span: " << maxChartSpans[decodeGraphInd] << endl;
|
|
decodeGraph = new DecodeGraph(m_decodeGraphs.size(), maxChartSpan);
|
|
} else {
|
|
decodeGraph = new DecodeGraph(m_decodeGraphs.size());
|
|
}
|
|
|
|
m_decodeGraphs.push_back(decodeGraph); // TODO max chart span
|
|
}
|
|
|
|
m_decodeGraphs[decodeGraphInd]->Add(decodeStep);
|
|
prev = decodeStep;
|
|
prevDecodeGraphInd = decodeGraphInd;
|
|
}
|
|
|
|
// set maximum n-gram size for backoff approach to decoding paths
|
|
// default is always use subsequent paths (value = 0)
|
|
for(size_t i=0; i<m_decodeGraphs.size(); i++) {
|
|
m_decodeGraphBackoff.push_back( 0 );
|
|
}
|
|
// if specified, record maxmimum unseen n-gram size
|
|
const vector<string> &backoffVector = m_parameter->GetParam("decoding-graph-backoff");
|
|
for(size_t i=0; i<m_decodeGraphs.size() && i<backoffVector.size(); i++) {
|
|
m_decodeGraphBackoff[i] = Scan<size_t>(backoffVector[i]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
const TranslationOptionList* StaticData::FindTransOptListInCache(const DecodeGraph &decodeGraph, const Phrase &sourcePhrase) const
|
|
{
|
|
std::pair<size_t, std::string> cacheKey(decodeGraph.GetPosition(), m_currentWeightSetting);
|
|
std::pair<std::pair<size_t, std::string>, Phrase> key(cacheKey, sourcePhrase);
|
|
#ifdef WITH_THREADS
|
|
boost::mutex::scoped_lock lock(m_transOptCacheMutex);
|
|
#endif
|
|
std::map<std::pair<std::pair<size_t, std::string>, Phrase>, std::pair<TranslationOptionList*,clock_t> >::iterator iter
|
|
= m_transOptCache.find(key);
|
|
if (iter == m_transOptCache.end())
|
|
return NULL;
|
|
iter->second.second = clock(); // update last used time
|
|
return iter->second.first;
|
|
}
|
|
|
|
void StaticData::ReduceTransOptCache() const
|
|
{
|
|
if (m_transOptCache.size() <= m_transOptCacheMaxSize) return; // not full
|
|
clock_t t = clock();
|
|
|
|
// find cutoff for last used time
|
|
priority_queue< clock_t > lastUsedTimes;
|
|
|
|
std::map<std::pair<std::pair<size_t, std::string>, Phrase>, std::pair<TranslationOptionList*,clock_t> >::iterator iter;
|
|
iter = m_transOptCache.begin();
|
|
while( iter != m_transOptCache.end() ) {
|
|
lastUsedTimes.push( iter->second.second );
|
|
iter++;
|
|
}
|
|
for( size_t i=0; i < lastUsedTimes.size()-m_transOptCacheMaxSize/2; i++ )
|
|
lastUsedTimes.pop();
|
|
clock_t cutoffLastUsedTime = lastUsedTimes.top();
|
|
|
|
// remove all old entries
|
|
iter = m_transOptCache.begin();
|
|
while( iter != m_transOptCache.end() ) {
|
|
if (iter->second.second < cutoffLastUsedTime) {
|
|
std::map<std::pair<std::pair<size_t, std::string>, Phrase>, std::pair<TranslationOptionList*,clock_t> >::iterator iterRemove = iter++;
|
|
delete iterRemove->second.first;
|
|
m_transOptCache.erase(iterRemove);
|
|
} else iter++;
|
|
}
|
|
VERBOSE(2,"Reduced persistent translation option cache in " << ((clock()-t)/(float)CLOCKS_PER_SEC) << " seconds." << std::endl);
|
|
}
|
|
|
|
void StaticData::AddTransOptListToCache(const DecodeGraph &decodeGraph, const Phrase &sourcePhrase, const TranslationOptionList &transOptList) const
|
|
{
|
|
if (m_transOptCacheMaxSize == 0) return;
|
|
std::pair<size_t, std::string> cacheKey(decodeGraph.GetPosition(), m_currentWeightSetting);
|
|
std::pair<std::pair<size_t, std::string>, Phrase> key(cacheKey, sourcePhrase);
|
|
TranslationOptionList* storedTransOptList = new TranslationOptionList(transOptList);
|
|
#ifdef WITH_THREADS
|
|
boost::mutex::scoped_lock lock(m_transOptCacheMutex);
|
|
#endif
|
|
m_transOptCache[key] = make_pair( storedTransOptList, clock() );
|
|
ReduceTransOptCache();
|
|
}
|
|
void StaticData::ClearTransOptionCache() const
|
|
{
|
|
map<std::pair<std::pair<size_t, std::string>, Phrase>, std::pair< TranslationOptionList*, clock_t > >::iterator iterCache;
|
|
for (iterCache = m_transOptCache.begin() ; iterCache != m_transOptCache.end() ; ++iterCache) {
|
|
TranslationOptionList *transOptList = iterCache->second.first;
|
|
delete transOptList;
|
|
}
|
|
}
|
|
|
|
void StaticData::ReLoadParameter()
|
|
{
|
|
assert(false); // TODO completely redo. Too many hardcoded ff
|
|
/*
|
|
m_verboseLevel = 1;
|
|
if (m_parameter->GetParam("verbose").size() == 1) {
|
|
m_verboseLevel = Scan<size_t>( m_parameter->GetParam("verbose")[0]);
|
|
}
|
|
|
|
// check whether "weight-u" is already set
|
|
if (m_parameter->isParamShortNameSpecified("u")) {
|
|
if (m_parameter->GetParamShortName("u").size() < 1 ) {
|
|
PARAM_VEC w(1,"1.0");
|
|
m_parameter->OverwriteParamShortName("u", w);
|
|
}
|
|
}
|
|
|
|
//loop over all ScoreProducer to update weights
|
|
|
|
std::vector<const ScoreProducer*>::const_iterator iterSP;
|
|
for (iterSP = transSystem.GetFeatureFunctions().begin() ; iterSP != transSystem.GetFeatureFunctions().end() ; ++iterSP) {
|
|
std::string paramShortName = (*iterSP)->GetScoreProducerWeightShortName();
|
|
vector<float> Weights = Scan<float>(m_parameter->GetParamShortName(paramShortName));
|
|
|
|
if (paramShortName == "d") { //basic distortion model takes the first weight
|
|
if ((*iterSP)->GetScoreProducerDescription() == "Distortion") {
|
|
Weights.resize(1); //take only the first element
|
|
} else { //lexicalized reordering model takes the other
|
|
Weights.erase(Weights.begin()); //remove the first element
|
|
}
|
|
// std::cerr << "this is the Distortion Score Producer -> " << (*iterSP)->GetScoreProducerDescription() << std::cerr;
|
|
// std::cerr << "this is the Distortion Score Producer; it has " << (*iterSP)->GetNumScoreComponents() << " weights"<< std::cerr;
|
|
// std::cerr << Weights << std::endl;
|
|
} else if (paramShortName == "tm") {
|
|
continue;
|
|
}
|
|
SetWeights(*iterSP, Weights);
|
|
}
|
|
|
|
// std::cerr << "There are " << m_phraseDictionary.size() << " m_phraseDictionaryfeatures" << std::endl;
|
|
|
|
const vector<float> WeightsTM = Scan<float>(m_parameter->GetParamShortName("tm"));
|
|
// std::cerr << "WeightsTM: " << WeightsTM << std::endl;
|
|
|
|
const vector<float> WeightsLM = Scan<float>(m_parameter->GetParamShortName("lm"));
|
|
// std::cerr << "WeightsLM: " << WeightsLM << std::endl;
|
|
|
|
size_t index_WeightTM = 0;
|
|
for(size_t i=0; i<transSystem.GetPhraseDictionaries().size(); ++i) {
|
|
PhraseDictionaryFeature &phraseDictionaryFeature = *m_phraseDictionary[i];
|
|
|
|
// std::cerr << "phraseDictionaryFeature.GetNumScoreComponents():" << phraseDictionaryFeature.GetNumScoreComponents() << std::endl;
|
|
// std::cerr << "phraseDictionaryFeature.GetNumInputScores():" << phraseDictionaryFeature.GetNumInputScores() << std::endl;
|
|
|
|
vector<float> tmp_weights;
|
|
for(size_t j=0; j<phraseDictionaryFeature.GetNumScoreComponents(); ++j)
|
|
tmp_weights.push_back(WeightsTM[index_WeightTM++]);
|
|
|
|
// std::cerr << tmp_weights << std::endl;
|
|
|
|
SetWeights(&phraseDictionaryFeature, tmp_weights);
|
|
}
|
|
*/
|
|
}
|
|
|
|
void StaticData::ReLoadBleuScoreFeatureParameter(float weight)
|
|
{
|
|
assert(false);
|
|
/*
|
|
//loop over ScoreProducers to update weights of BleuScoreFeature
|
|
|
|
std::vector<const ScoreProducer*>::const_iterator iterSP;
|
|
for (iterSP = transSystem.GetFeatureFunctions().begin() ; iterSP != transSystem.GetFeatureFunctions().end() ; ++iterSP) {
|
|
std::string paramShortName = (*iterSP)->GetScoreProducerWeightShortName();
|
|
if (paramShortName == "bl") {
|
|
SetWeight(*iterSP, weight);
|
|
break;
|
|
}
|
|
}
|
|
*/
|
|
}
|
|
|
|
// ScoreComponentCollection StaticData::GetAllWeightsScoreComponentCollection() const {}
|
|
// in ScoreComponentCollection.h
|
|
|
|
void StaticData::SetExecPath(const std::string &path)
|
|
{
|
|
/*
|
|
namespace fs = boost::filesystem;
|
|
|
|
fs::path full_path( fs::initial_path<fs::path>() );
|
|
|
|
full_path = fs::system_complete( fs::path( path ) );
|
|
|
|
//Without file name
|
|
m_binPath = full_path.parent_path().string();
|
|
*/
|
|
|
|
// NOT TESTED
|
|
size_t pos = path.rfind("/");
|
|
if (pos != string::npos) {
|
|
m_binPath = path.substr(0, pos);
|
|
}
|
|
cerr << m_binPath << endl;
|
|
}
|
|
|
|
const string &StaticData::GetBinDirectory() const
|
|
{
|
|
return m_binPath;
|
|
}
|
|
|
|
float StaticData::GetWeightWordPenalty() const
|
|
{
|
|
float weightWP = GetWeight(m_wpProducer);
|
|
//VERBOSE(1, "Read weightWP from translation sytem: " << weightWP << std::endl);
|
|
return weightWP;
|
|
}
|
|
|
|
float StaticData::GetWeightUnknownWordPenalty() const
|
|
{
|
|
return GetWeight(m_unknownWordPenaltyProducer);
|
|
}
|
|
|
|
void StaticData::InitializeForInput(const InputType& source) const
|
|
{
|
|
const std::vector<FeatureFunction*> &producers = FeatureFunction::GetFeatureFunctions();
|
|
for(size_t i=0; i<producers.size(); ++i) {
|
|
FeatureFunction &ff = *producers[i];
|
|
ff.InitializeForInput(source);
|
|
}
|
|
}
|
|
|
|
void StaticData::CleanUpAfterSentenceProcessing(const InputType& source) const
|
|
{
|
|
const std::vector<FeatureFunction*> &producers = FeatureFunction::GetFeatureFunctions();
|
|
for(size_t i=0; i<producers.size(); ++i) {
|
|
FeatureFunction &ff = *producers[i];
|
|
ff.CleanUpAfterSentenceProcessing(source);
|
|
}
|
|
}
|
|
|
|
void StaticData::LoadFeatureFunctions()
|
|
{
|
|
const std::vector<FeatureFunction*> &ffs = FeatureFunction::GetFeatureFunctions();
|
|
std::vector<FeatureFunction*>::const_iterator iter;
|
|
for (iter = ffs.begin(); iter != ffs.end(); ++iter) {
|
|
FeatureFunction *ff = *iter;
|
|
bool doLoad = true;
|
|
|
|
if (PhraseDictionary *ffCast = dynamic_cast<PhraseDictionary*>(ff)) {
|
|
m_phraseDictionary.push_back(ffCast);
|
|
doLoad = false;
|
|
} else if (const GenerationDictionary *ffCast = dynamic_cast<const GenerationDictionary*>(ff)) {
|
|
m_generationDictionary.push_back(ffCast);
|
|
} else if (WordPenaltyProducer *ffCast = dynamic_cast<WordPenaltyProducer*>(ff)) {
|
|
CHECK(m_wpProducer == NULL); // max 1 feature;
|
|
m_wpProducer = ffCast;
|
|
} else if (UnknownWordPenaltyProducer *ffCast = dynamic_cast<UnknownWordPenaltyProducer*>(ff)) {
|
|
CHECK(m_unknownWordPenaltyProducer == NULL); // max 1 feature;
|
|
m_unknownWordPenaltyProducer = ffCast;
|
|
} else if (const InputFeature *ffCast = dynamic_cast<const InputFeature*>(ff)) {
|
|
CHECK(m_inputFeature == NULL); // max 1 input feature;
|
|
m_inputFeature = ffCast;
|
|
}
|
|
|
|
if (doLoad) {
|
|
ff->Load();
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < m_phraseDictionary.size(); ++i) {
|
|
PhraseDictionary *pt = m_phraseDictionary[i];
|
|
pt->Load();
|
|
}
|
|
|
|
}
|
|
|
|
bool StaticData::CheckWeights() const
|
|
{
|
|
set<string> weightNames = m_parameter->GetWeightNames();
|
|
|
|
const std::vector<FeatureFunction*> &ffs = FeatureFunction::GetFeatureFunctions();
|
|
for (size_t i = 0; i < ffs.size(); ++i) {
|
|
const FeatureFunction &ff = *ffs[i];
|
|
const string &descr = ff.GetScoreProducerDescription();
|
|
|
|
set<string>::iterator iter = weightNames.find(descr);
|
|
if (iter == weightNames.end()) {
|
|
cerr << "Can't find weights for feature function " << descr << endl;
|
|
} else {
|
|
weightNames.erase(iter);
|
|
}
|
|
}
|
|
|
|
if (!weightNames.empty()) {
|
|
cerr << "The following weights have no feature function. Maybe incorrectly spelt weights: ";
|
|
set<string>::iterator iter;
|
|
for (iter = weightNames.begin(); iter != weightNames.end(); ++iter) {
|
|
cerr << *iter << ",";
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**! Read in settings for alternative weights */
|
|
bool StaticData::LoadAlternateWeightSettings()
|
|
{
|
|
if (m_threadCount > 1) {
|
|
cerr << "ERROR: alternative weight settings currently not supported with multi-threading.";
|
|
return false;
|
|
}
|
|
|
|
const vector<string> &weightSpecification = m_parameter->GetParam("alternate-weight-setting");
|
|
|
|
// get mapping from feature names to feature functions
|
|
map<string,FeatureFunction*> nameToFF;
|
|
const std::vector<FeatureFunction*> &ffs = FeatureFunction::GetFeatureFunctions();
|
|
for (size_t i = 0; i < ffs.size(); ++i) {
|
|
nameToFF[ ffs[i]->GetScoreProducerDescription() ] = ffs[i];
|
|
}
|
|
|
|
// copy main weight setting as default
|
|
m_weightSetting["default"] = new ScoreComponentCollection( m_allWeights );
|
|
|
|
// go through specification in config file
|
|
string currentId = "";
|
|
bool hasErrors = false;
|
|
for (size_t i=0; i<weightSpecification.size(); ++i) {
|
|
|
|
// identifier line (with optional additional specifications)
|
|
if (weightSpecification[i].find("id=") == 0) {
|
|
vector<string> tokens = Tokenize(weightSpecification[i]);
|
|
vector<string> args = Tokenize(tokens[0], "=");
|
|
currentId = args[1];
|
|
cerr << "alternate weight setting " << currentId << endl;
|
|
CHECK(m_weightSetting.find(currentId) == m_weightSetting.end());
|
|
m_weightSetting[ currentId ] = new ScoreComponentCollection;
|
|
|
|
// other specifications
|
|
for(size_t j=1; j<tokens.size(); j++) {
|
|
vector<string> args = Tokenize(tokens[j], "=");
|
|
// TODO: support for sparse weights
|
|
if (args[0] == "weight-file") {
|
|
cerr << "ERROR: sparse weight files currently not supported";
|
|
}
|
|
// ignore feature functions
|
|
else if (args[0] == "ignore-ff") {
|
|
set< string > *ffNameSet = new set< string >;
|
|
m_weightSettingIgnoreFF[ currentId ] = *ffNameSet;
|
|
vector<string> featureFunctionName = Tokenize(args[1], " ");
|
|
for(size_t k=0; k<featureFunctionName.size(); k++) {
|
|
// check if a valid nane
|
|
map<string,FeatureFunction*>::iterator ffLookUp = nameToFF.find(featureFunctionName[k]);
|
|
if (ffLookUp == nameToFF.end()) {
|
|
cerr << "ERROR: alternate weight setting " << currentId << " specifies to ignore feature function " << featureFunctionName[k] << " but there is no such feature function" << endl;
|
|
hasErrors = true;
|
|
} else {
|
|
m_weightSettingIgnoreFF[ currentId ].insert( featureFunctionName[k] );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// weight lines
|
|
else {
|
|
CHECK(currentId != "");
|
|
vector<string> tokens = Tokenize(weightSpecification[i]);
|
|
CHECK(tokens.size() >= 2);
|
|
|
|
// get name and weight values
|
|
string name = tokens[0];
|
|
name = name.substr(0, name.size() - 1); // remove trailing "="
|
|
vector<float> weights(tokens.size() - 1);
|
|
for (size_t i = 1; i < tokens.size(); ++i) {
|
|
float weight = Scan<float>(tokens[i]);
|
|
weights[i - 1] = weight;
|
|
}
|
|
|
|
// check if a valid nane
|
|
map<string,FeatureFunction*>::iterator ffLookUp = nameToFF.find(name);
|
|
if (ffLookUp == nameToFF.end()) {
|
|
cerr << "ERROR: alternate weight setting " << currentId << " specifies weight(s) for " << name << " but there is no such feature function" << endl;
|
|
hasErrors = true;
|
|
} else {
|
|
m_weightSetting[ currentId ]->Assign( nameToFF[name], weights);
|
|
}
|
|
}
|
|
}
|
|
CHECK(!hasErrors);
|
|
return true;
|
|
}
|
|
|
|
void StaticData::OverrideFeatures()
|
|
{
|
|
const PARAM_VEC ¶ms = m_parameter->GetParam("feature-overwrite");
|
|
for (size_t i = 0; i < params.size(); ++i) {
|
|
const string &str = params[i];
|
|
vector<string> toks = Tokenize(str);
|
|
CHECK(toks.size() > 1);
|
|
|
|
FeatureFunction &ff = FeatureFunction::FindFeatureFunction(toks[0]);
|
|
|
|
for (size_t j = 1; j < toks.size(); ++j) {
|
|
const string &keyValStr = toks[j];
|
|
vector<string> keyVal = Tokenize(keyValStr, "=");
|
|
CHECK(keyVal.size() == 2);
|
|
|
|
VERBOSE(1, "Override " << ff.GetScoreProducerDescription() << " "
|
|
<< keyVal[0] << "=" << keyVal[1] << endl);
|
|
|
|
ff.SetParameter(keyVal[0], keyVal[1]);
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
} // namespace
|
|
|