mosesdecoder/util/bit_packing.hh

187 lines
5.6 KiB
C++

#ifndef UTIL_BIT_PACKING_H
#define UTIL_BIT_PACKING_H
/* Bit-level packing routines
*
* WARNING WARNING WARNING:
* The write functions assume that memory is zero initially. This makes them
* faster and is the appropriate case for mmapped language model construction.
* These routines assume that unaligned access to uint64_t is fast. This is
* the case on x86_64. I'm not sure how fast unaligned 64-bit access is on
* x86 but my target audience is large language models for which 64-bit is
* necessary.
*
* Call the BitPackingSanity function to sanity check. Calling once suffices,
* but it may be called multiple times when that's inconvenient.
*
* ARM and MinGW ports contributed by Hideo Okuma and Tomoyuki Yoshimura at
* NICT.
*/
#include <assert.h>
#ifdef __APPLE__
#include <architecture/byte_order.h>
#elif __linux__
#include <endian.h>
#elif !defined(_WIN32) && !defined(_WIN64)
#include <arpa/nameser_compat.h>
#endif
#include <stdint.h>
#include <string.h>
namespace util {
// Fun fact: __BYTE_ORDER is wrong on Solaris Sparc, but the version without __ is correct.
#if BYTE_ORDER == LITTLE_ENDIAN
inline uint8_t BitPackShift(uint8_t bit, uint8_t /*length*/) {
return bit;
}
#elif BYTE_ORDER == BIG_ENDIAN
inline uint8_t BitPackShift(uint8_t bit, uint8_t length) {
return 64 - length - bit;
}
#else
#error "Bit packing code isn't written for your byte order."
#endif
inline uint64_t ReadOff(const void *base, uint64_t bit_off) {
#if defined(__arm) || defined(__arm__)
const uint8_t *base_off = reinterpret_cast<const uint8_t*>(base) + (bit_off >> 3);
uint64_t value64;
memcpy(&value64, base_off, sizeof(value64));
return value64;
#else
return *reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(base) + (bit_off >> 3));
#endif
}
/* Pack integers up to 57 bits using their least significant digits.
* The length is specified using mask:
* Assumes mask == (1 << length) - 1 where length <= 57.
*/
inline uint64_t ReadInt57(const void *base, uint64_t bit_off, uint8_t length, uint64_t mask) {
return (ReadOff(base, bit_off) >> BitPackShift(bit_off & 7, length)) & mask;
}
/* Assumes value < (1 << length) and length <= 57.
* Assumes the memory is zero initially.
*/
inline void WriteInt57(void *base, uint64_t bit_off, uint8_t length, uint64_t value) {
#if defined(__arm) || defined(__arm__)
uint8_t *base_off = reinterpret_cast<uint8_t*>(base) + (bit_off >> 3);
uint64_t value64;
memcpy(&value64, base_off, sizeof(value64));
value64 |= (value << BitPackShift(bit_off & 7, length));
memcpy(base_off, &value64, sizeof(value64));
#else
*reinterpret_cast<uint64_t*>(reinterpret_cast<uint8_t*>(base) + (bit_off >> 3)) |=
(value << BitPackShift(bit_off & 7, length));
#endif
}
/* Same caveats as above, but for a 25 bit limit. */
inline uint32_t ReadInt25(const void *base, uint64_t bit_off, uint8_t length, uint32_t mask) {
#if defined(__arm) || defined(__arm__)
const uint8_t *base_off = reinterpret_cast<const uint8_t*>(base) + (bit_off >> 3);
uint32_t value32;
memcpy(&value32, base_off, sizeof(value32));
return (value32 >> BitPackShift(bit_off & 7, length)) & mask;
#else
return (*reinterpret_cast<const uint32_t*>(reinterpret_cast<const uint8_t*>(base) + (bit_off >> 3)) >> BitPackShift(bit_off & 7, length)) & mask;
#endif
}
inline void WriteInt25(void *base, uint64_t bit_off, uint8_t length, uint32_t value) {
#if defined(__arm) || defined(__arm__)
uint8_t *base_off = reinterpret_cast<uint8_t*>(base) + (bit_off >> 3);
uint32_t value32;
memcpy(&value32, base_off, sizeof(value32));
value32 |= (value << BitPackShift(bit_off & 7, length));
memcpy(base_off, &value32, sizeof(value32));
#else
*reinterpret_cast<uint32_t*>(reinterpret_cast<uint8_t*>(base) + (bit_off >> 3)) |=
(value << BitPackShift(bit_off & 7, length));
#endif
}
typedef union { float f; uint32_t i; } FloatEnc;
inline float ReadFloat32(const void *base, uint64_t bit_off) {
FloatEnc encoded;
encoded.i = ReadOff(base, bit_off) >> BitPackShift(bit_off & 7, 32);
return encoded.f;
}
inline void WriteFloat32(void *base, uint64_t bit_off, float value) {
FloatEnc encoded;
encoded.f = value;
WriteInt57(base, bit_off, 32, encoded.i);
}
const uint32_t kSignBit = 0x80000000;
inline void SetSign(float &to) {
FloatEnc enc;
enc.f = to;
enc.i |= kSignBit;
to = enc.f;
}
inline void UnsetSign(float &to) {
FloatEnc enc;
enc.f = to;
enc.i &= ~kSignBit;
to = enc.f;
}
inline float ReadNonPositiveFloat31(const void *base, uint64_t bit_off) {
FloatEnc encoded;
encoded.i = ReadOff(base, bit_off) >> BitPackShift(bit_off & 7, 31);
// Sign bit set means negative.
encoded.i |= kSignBit;
return encoded.f;
}
inline void WriteNonPositiveFloat31(void *base, uint64_t bit_off, float value) {
FloatEnc encoded;
encoded.f = value;
encoded.i &= ~kSignBit;
WriteInt57(base, bit_off, 31, encoded.i);
}
void BitPackingSanity();
// Return bits required to store integers upto max_value. Not the most
// efficient implementation, but this is only called a few times to size tries.
uint8_t RequiredBits(uint64_t max_value);
struct BitsMask {
static BitsMask ByMax(uint64_t max_value) {
BitsMask ret;
ret.FromMax(max_value);
return ret;
}
static BitsMask ByBits(uint8_t bits) {
BitsMask ret;
ret.bits = bits;
ret.mask = (1ULL << bits) - 1;
return ret;
}
void FromMax(uint64_t max_value) {
bits = RequiredBits(max_value);
mask = (1ULL << bits) - 1;
}
uint8_t bits;
uint64_t mask;
};
struct BitAddress {
BitAddress(void *in_base, uint64_t in_offset) : base(in_base), offset(in_offset) {}
void *base;
uint64_t offset;
};
} // namespace util
#endif // UTIL_BIT_PACKING_H