mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-02 17:09:36 +03:00
307 lines
11 KiB
Python
Executable File
307 lines
11 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
import unittest
|
|
|
|
from math import log,exp
|
|
|
|
import nbest
|
|
import numpy.testing as nptest
|
|
import sampler
|
|
from train import *
|
|
import util
|
|
|
|
class TestParabaloidOptimiser(unittest.TestCase):
|
|
def setUp(self):
|
|
self.o = ParabaloidOptimiser(np.array([1,2,3,4]))
|
|
|
|
def test_parabaloid_bfgs(self):
|
|
start = np.array([2,2,2,2])
|
|
minimum = self.o.optimise_bfgs(start)
|
|
for m in minimum:
|
|
self.assertAlmostEqual(m,0)
|
|
|
|
|
|
def test_parabaloid_lbfgs(self):
|
|
start = np.array([2,2,2,2])
|
|
minimum = self.o.optimise_lbfgs(start)
|
|
for m in minimum:
|
|
self.assertAlmostEqual(m,0)
|
|
|
|
class TestLogisticRegressionOptimiser(unittest.TestCase):
|
|
|
|
def test_objective(self):
|
|
x = np.array([[1], [0]])
|
|
y = np.array([1,-1])
|
|
lro = LogisticRegressionOptimiser(x,y)
|
|
w = np.array([2])
|
|
expected = -log(1 / (1 + exp(-2))) - log(0.5)
|
|
self.assertAlmostEqual(lro.objective(w), expected)
|
|
|
|
def test_reg_objective(self):
|
|
x = np.array([[1], [0]])
|
|
y = np.array([1,-1])
|
|
alpha = 0.1
|
|
lro = LogisticRegressionOptimiser(x,y,alpha)
|
|
w = np.array([2])
|
|
expected = -log(1 / (1 + exp(-2))) - log(0.5) + 0.5*2*2 * alpha
|
|
self.assertAlmostEqual(lro.objective(w), expected)
|
|
|
|
def test_gradient_j(self):
|
|
x = np.array([[1], [0]])
|
|
y = np.array([1,-1])
|
|
lro = LogisticRegressionOptimiser(x,y)
|
|
w = np.array([2])
|
|
expected = -1 / (1 + exp(2))
|
|
self.assertAlmostEqual(lro.grad_j(w,0), expected)
|
|
|
|
def test_gradient(self):
|
|
x = np.array([[1,1], [0,1]])
|
|
y = np.array([1,-1])
|
|
w = np.array([2,1])
|
|
lro = LogisticRegressionOptimiser(x,y)
|
|
e0 = -1 / (1 + exp(3))
|
|
e1 = -1 / (1 + exp(3)) + 1/ (1 + exp(-1))
|
|
actual = lro.grad(w)
|
|
#print "expected: ",e0,e1
|
|
self.assertAlmostEqual(actual[0], e0)
|
|
self.assertAlmostEqual(actual[1], e1)
|
|
|
|
def test_reg_gradient(self):
|
|
x = np.array([[1,1], [0,1]])
|
|
y = np.array([1,-1])
|
|
alpha = 0.2
|
|
w = np.array([2,1])
|
|
lro = LogisticRegressionOptimiser(x,y, alpha)
|
|
e0 = -1 / (1 + exp(3)) + w[0]*alpha
|
|
e1 = -1 / (1 + exp(3)) + 1/ (1 + exp(-1)) +w[1]*alpha
|
|
actual = lro.grad(w)
|
|
self.assertAlmostEqual(actual[0], e0)
|
|
self.assertAlmostEqual(actual[1], e1)
|
|
|
|
|
|
def test_train(self):
|
|
x = np.array([[1,1],[-1,-2]])
|
|
y = np.array([1,-1])
|
|
w0 = np.array([1,-1])
|
|
lro = LogisticRegressionOptimiser(x,y)
|
|
actual = lro.train(w0, debug=False)
|
|
self.assertAlmostEqual(actual[0], 12.03882542)
|
|
self.assertAlmostEqual(actual[1], 8.02317419)
|
|
|
|
def test_train_reg(self):
|
|
x = np.array([[1,1],[-1,1]])
|
|
y = np.array([1,-1])
|
|
alpha = 0.1
|
|
w0 = np.array([1,-1])
|
|
lro = LogisticRegressionOptimiser(x,y,alpha)
|
|
actual = lro.train(w0, debug=False)
|
|
self.assertAlmostEqual(actual[1],0) # 2nd input should be ignored
|
|
# classify first example as negative, second as positive
|
|
self.assertTrue(1 / (1+exp(-np.dot(actual,np.array([1,1])))) > 0.5)
|
|
self.assertTrue(1 / (1+exp(-np.dot(actual,np.array([-1,-2])))) < 0.5)
|
|
|
|
def test_xy(self):
|
|
"""Test pre-calculation of the y_i*x_ij vectors"""
|
|
x = np.array([[1,3], [2,8], [1,3]])
|
|
y = np.array([1,1,-1])
|
|
lro = LogisticRegressionOptimiser(x,y)
|
|
expected = np.array([[1,3], [2,8], [-1,-3]])
|
|
for i in 0,1,2:
|
|
for j in 0,1:
|
|
self.assertEqual(lro.xy[i][j], expected[i][j])
|
|
#
|
|
class TestMixtureModelTrainer(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
# 3 phrase table features, but last one is ignored for interpolation
|
|
nbest._feature_index = {"tm" : [0,3], "lm" : [3,4]}
|
|
log05 = np.log(0.5)
|
|
log03 = np.log(0.3)
|
|
log02 = np.log(0.2)
|
|
log01 = np.log(0.1)
|
|
hyp0 = nbest.Hypothesis("a |0-0| b c |1-2|", [log05, log05, log02, log03], True)
|
|
hyp0.input_line = "A B C"
|
|
hyp0.score = 3
|
|
# Two ttables, columns correspond to features, rows to phrase pairs
|
|
hyp0.phrase_scores = np.array([\
|
|
[[0.2, 0.3],\
|
|
[0.4, 0.3]],\
|
|
[[0, 0.2],\
|
|
[0.4,0.2]]])
|
|
|
|
hyp1 = nbest.Hypothesis("x |0-2|", [log02, log03, log03, log01], True)
|
|
hyp1.input_line = "X Y Z"
|
|
hyp1.score = 2
|
|
hyp1.phrase_scores = np.array([\
|
|
[[0.1, 0.1]],\
|
|
[[0.8,0.1]]])
|
|
|
|
hyp2 = nbest.Hypothesis("z |0-1| w |2-2| p |3-3|", [log02, log02, log05, log05], True)
|
|
hyp2.score = 1
|
|
hyp2.input_line = "M N O"
|
|
# phrase_table x phrase_pair x feature
|
|
hyp2.phrase_scores = np.array([\
|
|
[[0.1, 0.2],\
|
|
[0.3,0.5],\
|
|
[0.4,0.6]],\
|
|
[[0.1,0.5],\
|
|
[0.6,0.1],\
|
|
[0.2,0.2]]])
|
|
self.samples = [sampler.Sample(hyp0,hyp1), sampler.Sample(hyp1,hyp2)]
|
|
self.trainer = MixtureModelTrainer(self.samples)
|
|
|
|
def get_phrase_scores(self, hypothesis, iw):
|
|
nptest.assert_almost_equal(np.sum(iw, axis=0), np.array([1.0,1.0]))
|
|
phrase_probs = hypothesis.phrase_scores
|
|
interpolated_probs = np.sum(np.expand_dims(iw,1)*phrase_probs, axis = 0)
|
|
|
|
total_probs = np.prod(interpolated_probs, axis = 0)
|
|
return util.safelog(total_probs)
|
|
|
|
def model_score(self, hypothesis, weights):
|
|
# interpolation weights
|
|
# ttable x feature
|
|
iw = np.array([[weights[-2], weights[-1]],
|
|
[1-weights[-2],1-weights[-1]]])
|
|
#print "iw:",iw
|
|
phrase_scores = self.get_phrase_scores(hypothesis,iw)
|
|
weighted_phrase_scores = weights[:2] * phrase_scores
|
|
score = np.sum(weighted_phrase_scores)
|
|
|
|
other_score = np.sum(weights[2:4]*hypothesis.fv[2:4])
|
|
return score + other_score
|
|
|
|
|
|
def test_objective(self):
|
|
# 2 phrase weights, 2 other feature weights,
|
|
# 2 interpolation weights (1 per model x 2 phrase features)
|
|
weights = np.array([0.2,0.1,0.4,0.5,0.3,0.6])
|
|
actual = self.trainer.objective(weights)
|
|
# Expected objective is the sum of the logs of sigmoids of the score differences
|
|
# Weighted by 1 if hyp1 > hyp2, -1 otherwise
|
|
expected = 0
|
|
for sample in self.samples:
|
|
hyp1_model_score = self.model_score(sample.hyp1, weights)
|
|
hyp2_model_score = self.model_score(sample.hyp2, weights)
|
|
y = 1
|
|
if sample.hyp2.score > sample.hyp1.score: y = -1
|
|
expected -= log(sigmoid(y * (hyp1_model_score - hyp2_model_score)))
|
|
# regularisation
|
|
expected += 0.5 * self.trainer.alpha * np.dot(weights[:-2], weights[:-2])
|
|
self.assertAlmostEquals(actual,expected)
|
|
|
|
def test_gradient_other(self):
|
|
# Gradients are just differences in feature vectors
|
|
# fv(hypo0)-fv(hyp1), fv(hyp1)-fv(hyp2)
|
|
delta_s = np.vstack((self.samples[0].hyp1.fv-self.samples[0].hyp2.fv,\
|
|
self.samples[1].hyp1.fv-self.samples[1].hyp2.fv))
|
|
# feature functions across rows, samples down columns
|
|
# choose other features
|
|
other_delta_s = delta_s[:,2:]
|
|
actual = self.trainer.gradient_other()
|
|
nptest.assert_almost_equal(actual,other_delta_s)
|
|
|
|
def test_gradient_phrase(self):
|
|
iw = np.array([[0.3, 0.4],[0.7,0.6]])
|
|
sample_deltaf_list = []
|
|
for sample in self.samples:
|
|
f_A = self.get_phrase_scores(sample.hyp1, iw)
|
|
f_B = self.get_phrase_scores(sample.hyp2, iw)
|
|
sample_deltaf_list.append(f_A - f_B)
|
|
expected = np.vstack(sample_deltaf_list) # samples down, features along
|
|
actual = self.trainer.gradient_phrase(iw)
|
|
nptest.assert_almost_equal(actual,expected)
|
|
|
|
def test_gradient_interp(self):
|
|
# The interpolation weights - ttable x feature
|
|
iw = np.array([[0.3, 0.4],[0.7,0.6]])
|
|
phrasew = np.array([1,2]) # The phrase weights
|
|
num_ttables = iw.shape[0]
|
|
num_phrase_features = iw.shape[1]
|
|
bysample_list = []
|
|
# Stack up gradients for each sample
|
|
for sample in self.samples:
|
|
# Get the gradient of the interpolation weights for each
|
|
# hypothesis (A and B) in the sample
|
|
byhyp = []
|
|
for hyp in [sample.hyp1,sample.hyp2]:
|
|
# the weights are flattened. rows of iw joined together, last row omitted
|
|
grad_k = np.array([0.0] * ((num_ttables - 1) * num_phrase_features))
|
|
# Iterate through the phrase features
|
|
for j,probs in enumerate(np.transpose(hyp.phrase_scores)):
|
|
# j is phrase feature index
|
|
# probs is phrase-pair, ttable
|
|
grad_jk = np.array([0.0] * (len(iw)-1))
|
|
for l,phi in enumerate(probs):
|
|
# For each phrase-pair the gradient term for the lambda
|
|
# is the probability for this ttable - probability for last ttable
|
|
# divided by overall phrase probability
|
|
num = phi[:-1] - phi[-1]
|
|
denom = np.sum(iw[:,j]*phi) # use interpolation weights for this feature
|
|
grad_jk = grad_jk + (num/denom)
|
|
self.assertEquals(len(grad_jk), num_ttables-1)
|
|
#print "num",num,"denom",denom,"grad_jk",grad_jk
|
|
# add gradient in correct place
|
|
#print "\n",j,grad_k,phrasew[j]*grad_jk
|
|
grad_k[j*(num_ttables-1):(j+1)*(num_ttables-1)] =\
|
|
grad_k[j*(num_ttables-1):(j+1)*(num_ttables-1)] + phrasew[j]*grad_jk
|
|
#print "\ngrad_k",grad_k
|
|
byhyp.append(grad_k)
|
|
bysample_list.append(byhyp[0]-byhyp[1])
|
|
#print "diff: ", bysample_list[-1]
|
|
expected = np.vstack(bysample_list)
|
|
actual = self.trainer.gradient_interp(iw,phrasew)
|
|
nptest.assert_almost_equal(actual,expected, decimal=5)
|
|
|
|
def test_gradient(self):
|
|
# 2 phrase weights, 2 other feature weights,
|
|
# 2 interpolation weights (2 models and 2 tables)
|
|
weights = np.array([0.2,0.1,0.4,0.5,0.6,0.3])
|
|
expected = np.array([0.0] * len(weights))
|
|
# Get the gradients
|
|
iw = np.array([[weights[-2], weights[-1]],
|
|
[1-weights[-2],1-weights[-1]]])
|
|
phrase_g = self.trainer.gradient_phrase(iw)
|
|
other_g = self.trainer.gradient_other()
|
|
interp_g = self.trainer.gradient_interp(iw,weights[:2])
|
|
for k,sample in enumerate(self.samples):
|
|
hyp1_model_score = self.model_score(sample.hyp1, weights)
|
|
hyp2_model_score = self.model_score(sample.hyp2, weights)
|
|
y = 1
|
|
if sample.hyp2.score > sample.hyp1.score: y = -1
|
|
delta_score = hyp1_model_score - hyp2_model_score
|
|
sig_delta_score = sigmoid(-y * delta_score)
|
|
# phrase derivative term
|
|
expected[:2] -= (phrase_g[k]*sig_delta_score*y)
|
|
# other derivative term
|
|
expected[2:4] -= (other_g[k]*sig_delta_score*y)
|
|
# inter derivative term
|
|
expected[-2:] -= (interp_g[k]*sig_delta_score*y)
|
|
expected += self.trainer.alpha*np.append(weights[:-2], np.array([0.0,0.0]))
|
|
actual = self.trainer.gradient(weights)
|
|
nptest.assert_almost_equal(actual,expected)
|
|
|
|
def test_split_weights(self):
|
|
w = np.array([1,2,3,4,0.2,0.3])
|
|
sw = self.trainer.get_split_weights(w)
|
|
self.assertEquals(len(sw),3)
|
|
nptest.assert_almost_equal(sw['phrase'], np.array([1,2]))
|
|
nptest.assert_almost_equal(sw['other'], np.array([3,4]))
|
|
nptest.assert_almost_equal(sw['interp'], \
|
|
np.array([[0.2,0.3], [0.8,0.7]]))
|
|
|
|
|
|
def test_train(self):
|
|
"""Simple test that it runs without errors"""
|
|
print "x=",self.trainer.train()
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|
|
|
|
suite = unittest.TestSuite([
|
|
unittest.TestLoader().loadTestsFromTestCase(TestParabaloidOptimiser),
|
|
unittest.TestLoader().loadTestsFromTestCase(TestLogisticRegressionOptimiser),
|
|
unittest.TestLoader().loadTestsFromTestCase(TestMixtureModelTrainer)])
|
|
|
|
|