mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-11-10 10:59:21 +03:00
163 lines
3.4 KiB
C++
163 lines
3.4 KiB
C++
/*
|
|
* FeatureArray.cpp
|
|
* mert - Minimum Error Rate Training
|
|
*
|
|
* Created by Nicola Bertoldi on 13/05/08.
|
|
*
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include "FeatureArray.h"
|
|
#include "FileStream.h"
|
|
#include "Util.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace MosesTuning
|
|
{
|
|
|
|
|
|
FeatureArray::FeatureArray()
|
|
: m_index(0), m_num_features(0) {}
|
|
|
|
FeatureArray::~FeatureArray() {}
|
|
|
|
void FeatureArray::savetxt(ostream* os)
|
|
{
|
|
*os << FEATURES_TXT_BEGIN << " " << m_index << " " << m_array.size()
|
|
<< " " << m_num_features << " " << m_features << endl;
|
|
for (featarray_t::iterator i = m_array.begin(); i != m_array.end(); ++i) {
|
|
i->savetxt(os);
|
|
*os << endl;
|
|
}
|
|
*os << FEATURES_TXT_END << endl;
|
|
}
|
|
|
|
void FeatureArray::savebin(ostream* os)
|
|
{
|
|
*os << FEATURES_BIN_BEGIN << " " << m_index << " " << m_array.size()
|
|
<< " " << m_num_features << " " << m_features << endl;
|
|
for (featarray_t::iterator i = m_array.begin(); i != m_array.end(); ++i)
|
|
i->savebin(os);
|
|
|
|
*os << FEATURES_BIN_END << endl;
|
|
}
|
|
|
|
|
|
void FeatureArray::save(ostream* os, bool bin)
|
|
{
|
|
if (size() <= 0) return;
|
|
if (bin) {
|
|
savebin(os);
|
|
} else {
|
|
savetxt(os);
|
|
}
|
|
}
|
|
|
|
void FeatureArray::save(const string &file, bool bin)
|
|
{
|
|
ofstream ofs(file.c_str(), ios::out);
|
|
if (!ofs) {
|
|
cerr << "Failed to open " << file << endl;
|
|
exit(1);
|
|
}
|
|
ostream *os = &ofs;
|
|
save(os, bin);
|
|
ofs.close();
|
|
}
|
|
|
|
void FeatureArray::save(bool bin)
|
|
{
|
|
save(&cout, bin);
|
|
}
|
|
|
|
void FeatureArray::loadbin(istream* is, size_t n)
|
|
{
|
|
FeatureStats entry(m_num_features);
|
|
for (size_t i = 0 ; i < n; i++) {
|
|
entry.loadbin(is);
|
|
add(entry);
|
|
}
|
|
}
|
|
|
|
void FeatureArray::loadtxt(istream* is, const SparseVector& sparseWeights, size_t n)
|
|
{
|
|
FeatureStats entry(m_num_features);
|
|
|
|
for (size_t i=0 ; i < n; i++) {
|
|
entry.loadtxt(is, sparseWeights);
|
|
add(entry);
|
|
}
|
|
}
|
|
|
|
void FeatureArray::load(istream* is, const SparseVector& sparseWeights)
|
|
{
|
|
size_t number_of_entries = 0;
|
|
bool binmode = false;
|
|
|
|
string substring, stringBuf;
|
|
string::size_type loc;
|
|
|
|
getline(*is, stringBuf);
|
|
if (!is->good()) {
|
|
return;
|
|
}
|
|
|
|
if (!stringBuf.empty()) {
|
|
if ((loc = stringBuf.find(FEATURES_TXT_BEGIN)) == 0) {
|
|
binmode = false;
|
|
} else if ((loc = stringBuf.find(FEATURES_BIN_BEGIN)) == 0) {
|
|
binmode = true;
|
|
} else {
|
|
TRACE_ERR("ERROR: FeatureArray::load(): Wrong header");
|
|
return;
|
|
}
|
|
getNextPound(stringBuf, substring);
|
|
getNextPound(stringBuf, substring);
|
|
m_index = atoi(substring.c_str());
|
|
getNextPound(stringBuf, substring);
|
|
number_of_entries = atoi(substring.c_str());
|
|
getNextPound(stringBuf, substring);
|
|
m_num_features = atoi(substring.c_str());
|
|
m_features = stringBuf;
|
|
}
|
|
|
|
if (binmode) {
|
|
loadbin(is, number_of_entries);
|
|
} else {
|
|
loadtxt(is, sparseWeights, number_of_entries);
|
|
}
|
|
|
|
getline(*is, stringBuf);
|
|
if (!stringBuf.empty()) {
|
|
if ((loc = stringBuf.find(FEATURES_TXT_END)) != 0 &&
|
|
(loc = stringBuf.find(FEATURES_BIN_END)) != 0) {
|
|
TRACE_ERR("ERROR: FeatureArray::load(): Wrong footer");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void FeatureArray::merge(FeatureArray& e)
|
|
{
|
|
//dummy implementation
|
|
for (size_t i = 0; i < e.size(); i++)
|
|
add(e.get(i));
|
|
}
|
|
|
|
bool FeatureArray::check_consistency() const
|
|
{
|
|
const size_t sz = NumberOfFeatures();
|
|
if (sz == 0)
|
|
return true;
|
|
|
|
for (featarray_t::const_iterator i = m_array.begin(); i != m_array.end(); i++) {
|
|
if (i->size() != sz)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
}
|