mosesdecoder/moses/ScoreComponentCollection.h
2013-05-21 13:00:26 +01:00

436 lines
13 KiB
C++

// $Id$
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#ifndef moses_ScoreComponentCollection_h
#define moses_ScoreComponentCollection_h
#include <numeric>
#include <sstream>
#ifdef MPI_ENABLE
#include <boost/serialization/access.hpp>
#include <boost/serialization/split_member.hpp>
#endif
#include "util/check.hh"
#include "FeatureFunction.h"
#include "FeatureVector.h"
#include "TypeDef.h"
#include "Util.h"
namespace Moses
{
/*** An unweighted collection of scores for a translation or step in a translation.
*
* In the factored phrase-based models that are implemented by moses, there are a set of
* scores that come from a variety of sources (translation probabilities, language model
* probablilities, distortion probabilities, generation probabilities). Furthermore, while
* some of these scores may be 0, this number is fixed (and generally quite small, ie, less
* than 15), for a given model.
*
* The values contained in ScoreComponentCollection objects are unweighted scores (log-probs).
*
* ScoreComponentCollection objects can be added and subtracted, which makes them appropriate
* to be the datatype used to return the result of a score computations (in this case they will
* have most values set to zero, except for the ones that are results of the indivudal computation
* this will then be added into the "running total" in the Hypothesis. In fact, for a score
* to be tracked in the hypothesis (and thus to participate in the decoding process), a class
* representing that score must extend the ScoreProducer abstract base class. For an example
* refer to the DistortionScoreProducer class.
*/
class ScoreComponentCollection
{
friend std::ostream& operator<<(std::ostream& os, const ScoreComponentCollection& rhs);
private:
FVector m_scores;
typedef std::pair<size_t,size_t> IndexPair;
typedef std::map<const FeatureFunction*,IndexPair> ScoreIndexMap;
static ScoreIndexMap s_scoreIndexes;
static size_t s_denseVectorSize;
static IndexPair GetIndexes(const FeatureFunction* sp)
{
ScoreIndexMap::const_iterator indexIter = s_scoreIndexes.find(sp);
if (indexIter == s_scoreIndexes.end()) {
std::cerr << "ERROR: FeatureFunction: " << sp->GetScoreProducerDescription() <<
" not registered with ScoreIndexMap" << std::endl;
std::cerr << "You must call ScoreComponentCollection.RegisterScoreProducer() " <<
" for every FeatureFunction" << std::endl;
abort();
}
return indexIter->second;
}
public:
static void ResetCounter() {
s_denseVectorSize = 0;
}
//! Create a new score collection with all values set to 0.0
ScoreComponentCollection();
//! Clone a score collection
ScoreComponentCollection(const ScoreComponentCollection& rhs)
: m_scores(rhs.m_scores)
{}
ScoreComponentCollection& operator=( const ScoreComponentCollection& rhs ) {
m_scores = rhs.m_scores;
return *this;
}
/**
* Register a ScoreProducer with a fixed number of scores, so that it can
* be allocated space in the dense part of the feature vector.
**/
static void RegisterScoreProducer(const FeatureFunction* scoreProducer);
/** Load from file */
bool Load(const std::string& filename)
{
return m_scores.load(filename);
}
const FVector& GetScoresVector() const
{
return m_scores;
}
const std::valarray<FValue> &getCoreFeatures() const {
return m_scores.getCoreFeatures();
}
size_t Size() const
{
return m_scores.size();
}
void Resize()
{
if (m_scores.coreSize() != s_denseVectorSize) {
m_scores.resize(s_denseVectorSize);
}
}
/** Create and FVector with the right number of core features */
static FVector CreateFVector()
{
return FVector(s_denseVectorSize);
}
void SetToBinaryOf(const ScoreComponentCollection& rhs)
{
m_scores.setToBinaryOf(rhs.m_scores);
}
//! Set all values to 0.0
void ZeroAll()
{
m_scores.clear();
}
void MultiplyEquals(float scalar);
void DivideEquals(float scalar);
void CoreDivideEquals(float scalar);
void DivideEquals(const ScoreComponentCollection& rhs);
void MultiplyEquals(const ScoreComponentCollection& rhs);
void MultiplyEqualsBackoff(const ScoreComponentCollection& rhs, float backoff);
void MultiplyEquals(float core_r0, float sparse_r0);
void MultiplyEquals(const FeatureFunction* sp, float scalar);
size_t GetNumberWeights(const FeatureFunction* sp);
void CoreAssign(const ScoreComponentCollection& rhs)
{
m_scores.coreAssign(rhs.m_scores);
}
//! add the score in rhs
void PlusEquals(const ScoreComponentCollection& rhs)
{
m_scores += rhs.m_scores;
}
// add only sparse features
void SparsePlusEquals(const ScoreComponentCollection& rhs)
{
m_scores.sparsePlusEquals(rhs.m_scores);
}
void PlusEquals(const FVector& scores)
{
m_scores += scores;
}
//! subtract the score in rhs
void MinusEquals(const ScoreComponentCollection& rhs)
{
m_scores -= rhs.m_scores;
}
//For features which have an unbounded number of components
void MinusEquals(const FeatureFunction*sp, const std::string& name, float score)
{
FName fname(sp->GetScoreProducerDescription(),name);
m_scores[fname] -= score;
}
//For features which have an unbounded number of components
void SparseMinusEquals(const std::string& full_name, float score)
{
FName fname(full_name);
m_scores[fname] -= score;
}
//! Add scores from a single ScoreProducer only
//! The length of scores must be equal to the number of score components
//! produced by sp
void PlusEquals(const FeatureFunction* sp, const ScoreComponentCollection& scores)
{
IndexPair indexes = GetIndexes(sp);
for (size_t i = indexes.first; i < indexes.second; ++i) {
m_scores[i] += scores.m_scores[i];
}
}
//! Add scores from a single FeatureFunction only
//! The length of scores must be equal to the number of score components
//! produced by sp
void PlusEquals(const FeatureFunction* sp, const std::vector<float>& scores)
{
IndexPair indexes = GetIndexes(sp);
CHECK(scores.size() == indexes.second - indexes.first);
for (size_t i = 0; i < scores.size(); ++i) {
m_scores[i + indexes.first] += scores[i];
}
}
//! Special version PlusEquals(ScoreProducer, vector<float>)
//! to add the score from a single ScoreProducer that produces
//! a single value
void PlusEquals(const FeatureFunction* sp, float score)
{
IndexPair indexes = GetIndexes(sp);
CHECK(1 == indexes.second - indexes.first);
m_scores[indexes.first] += score;
}
//For features which have an unbounded number of components
void PlusEquals(const FeatureFunction*sp, const std::string& name, float score)
{
FName fname(sp->GetScoreProducerDescription(),name);
m_scores[fname] += score;
}
//For features which have an unbounded number of components
void PlusEquals(const FeatureFunction*sp, const StringPiece& name, float score)
{
FName fname(sp->GetScoreProducerDescription(),name);
m_scores[fname] += score;
}
//For features which have an unbounded number of components
void SparsePlusEquals(const std::string& full_name, float score)
{
FName fname(full_name);
m_scores[fname] += score;
}
void Assign(const FeatureFunction* sp, const std::vector<float>& scores)
{
IndexPair indexes = GetIndexes(sp);
CHECK(scores.size() == indexes.second - indexes.first);
for (size_t i = 0; i < scores.size(); ++i) {
m_scores[i + indexes.first] = scores[i];
}
}
//! Special version Assign(ScoreProducer, vector<float>)
//! to add the score from a single ScoreProducer that produces
//! a single value
void Assign(const FeatureFunction* sp, float score)
{
IndexPair indexes = GetIndexes(sp);
CHECK(1 == indexes.second - indexes.first);
m_scores[indexes.first] = score;
}
// Assign core weight by index
void Assign(size_t index, float score) {
m_scores[index] = score;
}
//For features which have an unbounded number of components
void Assign(const FeatureFunction*sp, const std::string name, float score)
{
FName fname(sp->GetScoreProducerDescription(),name);
m_scores[fname] = score;
}
//Read sparse features from string
void Assign(const FeatureFunction* sp, const std::string line);
// shortcut: setting the value directly using the feature name
void Assign(const std::string name, float score)
{
FName fname(name);
m_scores[fname] = score;
}
float InnerProduct(const ScoreComponentCollection& rhs) const
{
return m_scores.inner_product(rhs.m_scores);
}
float PartialInnerProduct(const FeatureFunction* sp, const std::vector<float>& rhs) const
{
std::vector<float> lhs = GetScoresForProducer(sp);
CHECK(lhs.size() == rhs.size());
return std::inner_product(lhs.begin(), lhs.end(), rhs.begin(), 0.0f);
}
//! return a vector of all the scores associated with a certain FeatureFunction
std::vector<float> GetScoresForProducer(const FeatureFunction* sp) const
{
size_t components = sp->GetNumScoreComponents();
std::vector<float> res(components);
IndexPair indexes = GetIndexes(sp);
for (size_t i = 0; i < res.size(); ++i) {
res[i] = m_scores[i + indexes.first];
}
return res;
}
//! get subset of scores that belong to a certain sparse ScoreProducer
FVector GetVectorForProducer(const FeatureFunction* sp) const;
float GetSparseWeight(const FName& featureName) const
{
return m_scores[featureName];
}
void PrintCoreFeatures() {
m_scores.printCoreFeatures();
}
void ThresholdScaling(float maxValue)
{
// find (smallest) factor for which all weights are <= maxValue
// 0.1 / 0.14 = 0.714285714
// 0.1 / 0.17 = 0.588235294
m_scores.thresholdScale(maxValue);
}
void CapMax(float maxValue)
{
// cap all sparse features to maxValue
m_scores.capMax(maxValue);
}
void CapMin(float minValue)
{
// cap all sparse features to minValue
m_scores.capMin(minValue);
}
//! if a FeatureFunction produces a single score (for example, a language model score)
//! this will return it. If not, this method will throw
float GetScoreForProducer(const FeatureFunction* sp) const
{
IndexPair indexes = GetIndexes(sp);
CHECK(indexes.second - indexes.first == 1);
return m_scores[indexes.first];
}
//For features which have an unbounded number of components
float GetScoreForProducer
(const FeatureFunction* sp, const std::string& name) const
{
FName fname(sp->GetScoreProducerDescription(),name);
return m_scores[fname];
}
float GetWeightedScore() const;
void ZeroDenseFeatures(const FeatureFunction* sp);
void L1Normalise();
float GetL1Norm() const;
float GetL2Norm() const;
float GetLInfNorm() const;
size_t L1Regularize(float lambda);
void L2Regularize(float lambda);
size_t SparseL1Regularize(float lambda);
void SparseL2Regularize(float lambda);
void Save(const std::string& filename) const;
void Save(std::ostream&) const;
void IncrementSparseHopeFeatures() { m_scores.incrementSparseHopeFeatures(); }
void IncrementSparseFearFeatures() { m_scores.incrementSparseFearFeatures(); }
void PrintSparseHopeFeatureCounts(std::ofstream& out) { m_scores.printSparseHopeFeatureCounts(out); }
void PrintSparseFearFeatureCounts(std::ofstream& out) { m_scores.printSparseFearFeatureCounts(out); }
void PrintSparseHopeFeatureCounts() { m_scores.printSparseHopeFeatureCounts(); }
void PrintSparseFearFeatureCounts() { m_scores.printSparseFearFeatureCounts(); }
size_t PruneSparseFeatures(size_t threshold) { return m_scores.pruneSparseFeatures(threshold); }
size_t PruneZeroWeightFeatures() { return m_scores.pruneZeroWeightFeatures(); }
void UpdateConfidenceCounts(ScoreComponentCollection &weightUpdate, bool signedCounts) { m_scores.updateConfidenceCounts(weightUpdate.m_scores, signedCounts); }
void UpdateLearningRates(float decay_core, float decay_sparse, ScoreComponentCollection &confidenceCounts, float core_r0, float sparse_r0) { m_scores.updateLearningRates(decay_core, decay_sparse, confidenceCounts.m_scores, core_r0, sparse_r0); }
#ifdef MPI_ENABLE
public:
friend class boost::serialization::access;
private:
//serialization
template<class Archive>
void save(Archive &ar, const unsigned int version) const {
ar << m_scores;
}
template<class Archive>
void load(Archive &ar, const unsigned int version) {
ar >> m_scores;
}
BOOST_SERIALIZATION_SPLIT_MEMBER()
#endif
};
struct SCCPlus {
ScoreComponentCollection operator()
(const ScoreComponentCollection& lhs,
const ScoreComponentCollection& rhs) {
ScoreComponentCollection sum(lhs);
sum.PlusEquals(rhs);
return sum;
}
};
}
#endif