mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-09 04:56:57 +03:00
664 lines
18 KiB
C++
664 lines
18 KiB
C++
|
|
//#include <boost/functional/hash.hpp>
|
|
#include <algorithm>
|
|
#include "moses/FF/FFState.h"
|
|
#include "DALMWrapper.h"
|
|
#include "dalm.h"
|
|
#include "moses/FactorTypeSet.h"
|
|
#include "moses/FactorCollection.h"
|
|
#include "moses/InputFileStream.h"
|
|
#include "util/exception.hh"
|
|
#include "moses/ChartHypothesis.h"
|
|
#include "moses/ChartManager.h"
|
|
|
|
using namespace std;
|
|
|
|
/////////////////////////
|
|
void read_ini(const char *inifile, string &model, string &words, string &wordstxt)
|
|
{
|
|
ifstream ifs(inifile);
|
|
string line;
|
|
|
|
getline(ifs, line);
|
|
while(ifs) {
|
|
unsigned int pos = line.find("=");
|
|
string key = line.substr(0, pos);
|
|
string value = line.substr(pos+1, line.size()-pos);
|
|
if(key=="MODEL") {
|
|
model = value;
|
|
} else if(key=="WORDS") {
|
|
words = value;
|
|
} else if(key=="WORDSTXT") {
|
|
wordstxt = value;
|
|
}
|
|
getline(ifs, line);
|
|
}
|
|
}
|
|
/////////////////////////
|
|
|
|
namespace Moses
|
|
{
|
|
|
|
class Murmur: public DALM::State::HashFunction
|
|
{
|
|
public:
|
|
Murmur(std::size_t seed=0): seed(seed) {
|
|
}
|
|
virtual std::size_t operator()(const DALM::VocabId *words, std::size_t size) const {
|
|
return util::MurmurHashNative(words, sizeof(DALM::VocabId) * size, seed);
|
|
}
|
|
private:
|
|
std::size_t seed;
|
|
};
|
|
|
|
class DALMState : public FFState
|
|
{
|
|
private:
|
|
DALM::State state;
|
|
|
|
public:
|
|
DALMState() {
|
|
}
|
|
|
|
DALMState(const DALMState &from) {
|
|
state = from.state;
|
|
}
|
|
|
|
virtual ~DALMState() {
|
|
}
|
|
|
|
void reset(const DALMState &from) {
|
|
state = from.state;
|
|
}
|
|
|
|
virtual int Compare(const FFState& other) const {
|
|
const DALMState &o = static_cast<const DALMState &>(other);
|
|
if(state.get_count() < o.state.get_count()) return -1;
|
|
else if(state.get_count() > o.state.get_count()) return 1;
|
|
else return state.compare(o.state);
|
|
}
|
|
|
|
virtual size_t hash() const {
|
|
// imitate KenLM
|
|
return state.hash(Murmur());
|
|
}
|
|
|
|
virtual bool operator==(const FFState& other) const {
|
|
const DALMState &o = static_cast<const DALMState &>(other);
|
|
return state.compare(o.state) == 0;
|
|
}
|
|
|
|
DALM::State &get_state() {
|
|
return state;
|
|
}
|
|
|
|
void refresh() {
|
|
state.refresh();
|
|
}
|
|
};
|
|
|
|
class DALMChartState : public FFState
|
|
{
|
|
private:
|
|
DALM::Fragment prefixFragments[DALM_MAX_ORDER-1];
|
|
unsigned char prefixLength;
|
|
DALM::State rightContext;
|
|
bool isLarge;
|
|
|
|
public:
|
|
DALMChartState()
|
|
: prefixLength(0),
|
|
isLarge(false) {
|
|
}
|
|
|
|
virtual ~DALMChartState() {
|
|
}
|
|
|
|
inline unsigned char GetPrefixLength() const {
|
|
return prefixLength;
|
|
}
|
|
|
|
inline unsigned char &GetPrefixLength() {
|
|
return prefixLength;
|
|
}
|
|
|
|
inline const DALM::Fragment *GetPrefixFragments() const {
|
|
return prefixFragments;
|
|
}
|
|
|
|
inline DALM::Fragment *GetPrefixFragments() {
|
|
return prefixFragments;
|
|
}
|
|
|
|
inline const DALM::State &GetRightContext() const {
|
|
return rightContext;
|
|
}
|
|
|
|
inline DALM::State &GetRightContext() {
|
|
return rightContext;
|
|
}
|
|
|
|
inline bool LargeEnough() const {
|
|
return isLarge;
|
|
}
|
|
|
|
inline void SetAsLarge() {
|
|
isLarge=true;
|
|
}
|
|
|
|
virtual int Compare(const FFState& other) const {
|
|
const DALMChartState &o = static_cast<const DALMChartState &>(other);
|
|
if(prefixLength < o.prefixLength) return -1;
|
|
if(prefixLength > o.prefixLength) return 1;
|
|
if(prefixLength!=0) {
|
|
const DALM::Fragment &f = prefixFragments[prefixLength-1];
|
|
const DALM::Fragment &of = o.prefixFragments[prefixLength-1];
|
|
int ret = DALM::compare_fragments(f,of);
|
|
if(ret != 0) return ret;
|
|
}
|
|
if(isLarge != o.isLarge) return (int)isLarge - (int)o.isLarge;
|
|
if(rightContext.get_count() < o.rightContext.get_count()) return -1;
|
|
if(rightContext.get_count() > o.rightContext.get_count()) return 1;
|
|
return rightContext.compare(o.rightContext);
|
|
}
|
|
|
|
virtual size_t hash() const {
|
|
// imitate KenLM
|
|
unsigned char add[2];
|
|
add[0] = prefixLength;
|
|
add[1] = isLarge;
|
|
std::size_t seed = util::MurmurHashNative(add, 2, prefixLength ? prefixFragments[prefixLength-1].sid : 0);
|
|
return rightContext.hash(Murmur(seed));
|
|
}
|
|
|
|
virtual bool operator==(const FFState& other) const {
|
|
const DALMChartState &o = static_cast<const DALMChartState &>(other);
|
|
|
|
// check left state.
|
|
if(prefixLength != o.prefixLength) return false;
|
|
const DALM::Fragment &f = prefixFragments[prefixLength-1];
|
|
const DALM::Fragment &of = o.prefixFragments[prefixLength-1];
|
|
if(DALM::compare_fragments(f, of) != 0) return false;
|
|
|
|
// check right state.
|
|
if(rightContext.get_count() != o.rightContext.get_count()) return false;
|
|
return rightContext.compare(o.rightContext) == 0;
|
|
}
|
|
|
|
};
|
|
|
|
LanguageModelDALM::LanguageModelDALM(const std::string &line)
|
|
:LanguageModel(line)
|
|
{
|
|
ReadParameters();
|
|
|
|
if (m_factorType == NOT_FOUND) {
|
|
m_factorType = 0;
|
|
}
|
|
}
|
|
|
|
LanguageModelDALM::~LanguageModelDALM()
|
|
{
|
|
delete m_logger;
|
|
delete m_vocab;
|
|
delete m_lm;
|
|
}
|
|
|
|
void LanguageModelDALM::Load(AllOptions::ptr const& opts)
|
|
{
|
|
/////////////////////
|
|
// READING INIFILE //
|
|
/////////////////////
|
|
string inifile= m_filePath + "/dalm.ini";
|
|
|
|
string model; // Path to the double-array file.
|
|
string words; // Path to the vocabulary file.
|
|
string wordstxt; //Path to the vocabulary file in text format.
|
|
read_ini(inifile.c_str(), model, words, wordstxt);
|
|
|
|
model = m_filePath + "/" + model;
|
|
words = m_filePath + "/" + words;
|
|
wordstxt = m_filePath + "/" + wordstxt;
|
|
|
|
UTIL_THROW_IF(model.empty() || words.empty() || wordstxt.empty(),
|
|
util::FileOpenException,
|
|
"Failed to read DALM ini file " << m_filePath << ". Probably doesn't exist");
|
|
|
|
////////////////
|
|
// LOADING LM //
|
|
////////////////
|
|
|
|
// Preparing a logger object.
|
|
m_logger = new DALM::Logger(stderr);
|
|
m_logger->setLevel(DALM::LOGGER_INFO);
|
|
|
|
// Load the vocabulary file.
|
|
m_vocab = new DALM::Vocabulary(words, *m_logger);
|
|
|
|
// Load the language model.
|
|
m_lm = new DALM::LM(model, *m_vocab, m_nGramOrder, *m_logger);
|
|
|
|
wid_start = m_vocab->lookup(BOS_);
|
|
wid_end = m_vocab->lookup(EOS_);
|
|
|
|
// vocab mapping
|
|
CreateVocabMapping(wordstxt);
|
|
|
|
FactorCollection &collection = FactorCollection::Instance();
|
|
m_beginSentenceFactor = collection.AddFactor(BOS_);
|
|
}
|
|
|
|
const FFState *LanguageModelDALM::EmptyHypothesisState(const InputType &/*input*/) const
|
|
{
|
|
DALMState *s = new DALMState();
|
|
m_lm->init_state(s->get_state());
|
|
return s;
|
|
}
|
|
|
|
void LanguageModelDALM::CalcScore(const Phrase &phrase, float &fullScore, float &ngramScore, size_t &oovCount) const
|
|
{
|
|
oovCount = 0;
|
|
fullScore = 0.0f;
|
|
ngramScore = 0.0f;
|
|
|
|
size_t phraseSize = phrase.GetSize();
|
|
if (!phraseSize) return;
|
|
|
|
size_t currPos = 0;
|
|
//size_t hist_count = 0;
|
|
DALM::State state;
|
|
|
|
if(phrase.GetWord(0).GetFactor(m_factorType) == m_beginSentenceFactor) {
|
|
m_lm->init_state(state);
|
|
currPos++;
|
|
//hist_count++;
|
|
}
|
|
|
|
float score;
|
|
float prefixScore=0.0f;
|
|
float partScore=0.0f;
|
|
//std::cerr << std::setprecision(8);
|
|
//std::cerr << "# ";
|
|
while (currPos < phraseSize) {
|
|
const Word &word = phrase.GetWord(currPos);
|
|
//hist_count++;
|
|
|
|
if (word.IsNonTerminal()) {
|
|
//std::cerr << "X ";
|
|
state.refresh();
|
|
fullScore += partScore;
|
|
partScore = 0.0f;
|
|
//std::cerr << fullScore << " ";
|
|
//hist_count = 0;
|
|
} else {
|
|
//std::cerr << word.GetString(m_factorType).as_string() << " ";
|
|
DALM::VocabId wid = GetVocabId(word.GetFactor(m_factorType));
|
|
score = m_lm->query(wid, state);
|
|
partScore += score;
|
|
//std::cerr << partScore << " ";
|
|
//if (hist_count >= m_nGramOrder) ngramScore += score;
|
|
if (wid==m_vocab->unk()) ++oovCount;
|
|
}
|
|
|
|
currPos++;
|
|
if (currPos >= m_ContextSize) {
|
|
break;
|
|
}
|
|
}
|
|
prefixScore = fullScore + partScore;
|
|
//std::cerr << prefixScore << " ";
|
|
|
|
while (currPos < phraseSize) {
|
|
const Word &word = phrase.GetWord(currPos);
|
|
//hist_count++;
|
|
|
|
if (word.IsNonTerminal()) {
|
|
//std::cerr << "X ";
|
|
fullScore += partScore;
|
|
partScore = 0.0f;
|
|
//std::cerr << fullScore << " ";
|
|
state.refresh();
|
|
//hist_count = 0;
|
|
} else {
|
|
//std::cerr << word.GetString(m_factorType).as_string() << " ";
|
|
DALM::VocabId wid = GetVocabId(word.GetFactor(m_factorType));
|
|
score = m_lm->query(wid, state);
|
|
partScore += score;
|
|
//std::cerr << partScore << " ";
|
|
if (wid==m_vocab->unk()) ++oovCount;
|
|
}
|
|
|
|
currPos++;
|
|
}
|
|
fullScore += partScore;
|
|
|
|
ngramScore = TransformLMScore(fullScore - prefixScore);
|
|
fullScore = TransformLMScore(fullScore);
|
|
}
|
|
|
|
FFState *LanguageModelDALM::EvaluateWhenApplied(const Hypothesis &hypo, const FFState *ps, ScoreComponentCollection *out) const
|
|
{
|
|
// In this function, we only compute the LM scores of n-grams that overlap a
|
|
// phrase boundary. Phrase-internal scores are taken directly from the
|
|
// translation option.
|
|
|
|
const DALMState *dalm_ps = static_cast<const DALMState *>(ps);
|
|
|
|
// Empty phrase added? nothing to be done
|
|
if (hypo.GetCurrTargetLength() == 0) {
|
|
return dalm_ps ? new DALMState(*dalm_ps) : NULL;
|
|
}
|
|
|
|
const std::size_t begin = hypo.GetCurrTargetWordsRange().GetStartPos();
|
|
//[begin, end) in STL-like fashion.
|
|
const std::size_t end = hypo.GetCurrTargetWordsRange().GetEndPos() + 1;
|
|
const std::size_t adjust_end = std::min(end, begin + m_nGramOrder - 1);
|
|
|
|
DALMState *dalm_state = new DALMState(*dalm_ps);
|
|
DALM::State &state = dalm_state->get_state();
|
|
float score = 0.0;
|
|
for(std::size_t position=begin; position < adjust_end; position++) {
|
|
score += m_lm->query(GetVocabId(hypo.GetWord(position).GetFactor(m_factorType)), state);
|
|
}
|
|
|
|
if (hypo.IsSourceCompleted()) {
|
|
// Score end of sentence.
|
|
std::vector<DALM::VocabId> indices(m_nGramOrder-1);
|
|
const DALM::VocabId *last = LastIDs(hypo, &indices.front());
|
|
m_lm->set_state(&indices.front(), (last-&indices.front()), state);
|
|
|
|
score += m_lm->query(wid_end, state);
|
|
} else if (adjust_end < end) {
|
|
// Get state after adding a long phrase.
|
|
std::vector<DALM::VocabId> indices(m_nGramOrder-1);
|
|
const DALM::VocabId *last = LastIDs(hypo, &indices.front());
|
|
m_lm->set_state(&indices.front(), (last-&indices.front()), state);
|
|
}
|
|
|
|
score = TransformLMScore(score);
|
|
if (OOVFeatureEnabled()) {
|
|
std::vector<float> scores(2);
|
|
scores[0] = score;
|
|
scores[1] = 0.0;
|
|
out->PlusEquals(this, scores);
|
|
} else {
|
|
out->PlusEquals(this, score);
|
|
}
|
|
|
|
return dalm_state;
|
|
}
|
|
|
|
FFState *LanguageModelDALM::EvaluateWhenApplied(const ChartHypothesis& hypo, int featureID, ScoreComponentCollection *out) const
|
|
{
|
|
// initialize language model context state
|
|
DALMChartState *newState = new DALMChartState();
|
|
DALM::State &state = newState->GetRightContext();
|
|
|
|
DALM::Fragment *prefixFragments = newState->GetPrefixFragments();
|
|
unsigned char &prefixLength = newState->GetPrefixLength();
|
|
|
|
// initial language model scores
|
|
float hypoScore = 0.0; // total hypothesis score.
|
|
|
|
const TargetPhrase &targetPhrase = hypo.GetCurrTargetPhrase();
|
|
size_t hypoSize = targetPhrase.GetSize();
|
|
|
|
// get index map for underlying hypotheses
|
|
const AlignmentInfo::NonTermIndexMap &nonTermIndexMap =
|
|
targetPhrase.GetAlignNonTerm().GetNonTermIndexMap();
|
|
|
|
size_t phrasePos = 0;
|
|
|
|
// begginig of sentence.
|
|
if(hypoSize > 0) {
|
|
const Word &word = targetPhrase.GetWord(0);
|
|
if(word.GetFactor(m_factorType) == m_beginSentenceFactor) {
|
|
//std::cerr << word.GetString(m_factorType).as_string() << " ";
|
|
m_lm->init_state(state);
|
|
// state is finalized.
|
|
newState->SetAsLarge();
|
|
phrasePos++;
|
|
} else if(word.IsNonTerminal()) {
|
|
// special case: rule starts with non-terminal -> copy everything
|
|
|
|
const ChartHypothesis *prevHypo = hypo.GetPrevHypo(nonTermIndexMap[0]);
|
|
const DALMChartState* prevState =
|
|
static_cast<const DALMChartState*>(prevHypo->GetFFState(featureID));
|
|
|
|
|
|
// copy chart state
|
|
(*newState) = (*prevState);
|
|
|
|
phrasePos++;
|
|
}
|
|
}
|
|
|
|
// loop over rule
|
|
for (; phrasePos < hypoSize; phrasePos++) {
|
|
|
|
// consult rule for either word or non-terminal
|
|
const Word &word = targetPhrase.GetWord(phrasePos);
|
|
|
|
// regular word
|
|
if (!word.IsNonTerminal()) {
|
|
EvaluateTerminal(
|
|
word, hypoScore,
|
|
newState, state,
|
|
prefixFragments, prefixLength
|
|
);
|
|
}
|
|
|
|
// non-terminal, add phrase from underlying hypothesis
|
|
// internal non-terminal
|
|
else {
|
|
// look up underlying hypothesis
|
|
const ChartHypothesis *prevHypo = hypo.GetPrevHypo(nonTermIndexMap[phrasePos]);
|
|
const DALMChartState* prevState =
|
|
static_cast<const DALMChartState*>(prevHypo->GetFFState(featureID));
|
|
|
|
size_t prevTargetPhraseLength = prevHypo->GetCurrTargetPhrase().GetSize();
|
|
|
|
EvaluateNonTerminal(
|
|
word, hypoScore,
|
|
newState, state,
|
|
prefixFragments, prefixLength,
|
|
prevState, prevTargetPhraseLength
|
|
);
|
|
}
|
|
}
|
|
hypoScore = TransformLMScore(hypoScore);
|
|
hypoScore -= hypo.GetTranslationOption().GetScores().GetScoresForProducer(this)[0];
|
|
|
|
// assign combined score to score breakdown
|
|
if (OOVFeatureEnabled()) {
|
|
std::vector<float> scores(2);
|
|
scores[0] = hypoScore;
|
|
scores[1] = 0.0;
|
|
out->PlusEquals(this, scores);
|
|
} else {
|
|
out->PlusEquals(this, hypoScore);
|
|
}
|
|
|
|
return newState;
|
|
}
|
|
|
|
bool LanguageModelDALM::IsUseable(const FactorMask &mask) const
|
|
{
|
|
return mask[m_factorType];
|
|
}
|
|
|
|
void LanguageModelDALM::CreateVocabMapping(const std::string &wordstxt)
|
|
{
|
|
InputFileStream vocabStrm(wordstxt);
|
|
|
|
std::vector< std::pair<std::size_t, DALM::VocabId> > vlist;
|
|
string line;
|
|
std::size_t max_fid = 0;
|
|
while(getline(vocabStrm, line)) {
|
|
const Factor *factor = FactorCollection::Instance().AddFactor(line);
|
|
std::size_t fid = factor->GetId();
|
|
DALM::VocabId wid = m_vocab->lookup(line.c_str());
|
|
|
|
vlist.push_back(std::pair<std::size_t, DALM::VocabId>(fid, wid));
|
|
if(max_fid < fid) max_fid = fid;
|
|
}
|
|
|
|
for(std::size_t i = 0; i < m_vocabMap.size(); i++) {
|
|
m_vocabMap[i] = m_vocab->unk();
|
|
}
|
|
|
|
m_vocabMap.resize(max_fid+1, m_vocab->unk());
|
|
std::vector< std::pair<std::size_t, DALM::VocabId> >::iterator it = vlist.begin();
|
|
while(it != vlist.end()) {
|
|
std::pair<std::size_t, DALM::VocabId> &entry = *it;
|
|
m_vocabMap[entry.first] = entry.second;
|
|
|
|
++it;
|
|
}
|
|
}
|
|
|
|
DALM::VocabId LanguageModelDALM::GetVocabId(const Factor *factor) const
|
|
{
|
|
std::size_t fid = factor->GetId();
|
|
return (m_vocabMap.size() > fid)? m_vocabMap[fid] : m_vocab->unk();
|
|
}
|
|
|
|
void LanguageModelDALM::SetParameter(const std::string& key, const std::string& value)
|
|
{
|
|
if (key == "factor") {
|
|
m_factorType = Scan<FactorType>(value);
|
|
} else if (key == "order") {
|
|
m_nGramOrder = Scan<size_t>(value);
|
|
} else if (key == "path") {
|
|
m_filePath = value;
|
|
} else {
|
|
LanguageModel::SetParameter(key, value);
|
|
}
|
|
m_ContextSize = m_nGramOrder-1;
|
|
}
|
|
|
|
void LanguageModelDALM::EvaluateTerminal(
|
|
const Word &word,
|
|
float &hypoScore,
|
|
DALMChartState *newState,
|
|
DALM::State &state,
|
|
DALM::Fragment *prefixFragments,
|
|
unsigned char &prefixLength) const
|
|
{
|
|
|
|
DALM::VocabId wid = GetVocabId(word.GetFactor(m_factorType));
|
|
if (newState->LargeEnough()) {
|
|
float score = m_lm->query(wid, state);
|
|
hypoScore += score;
|
|
} else {
|
|
unsigned char prevLen = state.get_count();
|
|
float score = m_lm->query(wid, state, prefixFragments[prefixLength]);
|
|
|
|
if(score > 0) {
|
|
hypoScore -= score;
|
|
newState->SetAsLarge();
|
|
} else if(state.get_count()<=prefixLength) {
|
|
hypoScore += score;
|
|
prefixLength++;
|
|
newState->SetAsLarge();
|
|
} else {
|
|
hypoScore += score;
|
|
prefixLength++;
|
|
if(state.get_count() < std::min(prevLen+1, (int)m_ContextSize)) {
|
|
newState->SetAsLarge();
|
|
}
|
|
if(prefixLength >= m_ContextSize) newState->SetAsLarge();
|
|
}
|
|
}
|
|
}
|
|
|
|
void LanguageModelDALM::EvaluateNonTerminal(
|
|
const Word &word,
|
|
float &hypoScore,
|
|
DALMChartState *newState,
|
|
DALM::State &state,
|
|
DALM::Fragment *prefixFragments,
|
|
unsigned char &prefixLength,
|
|
const DALMChartState *prevState,
|
|
size_t prevTargetPhraseLength
|
|
) const
|
|
{
|
|
|
|
const unsigned char prevPrefixLength = prevState->GetPrefixLength();
|
|
const DALM::Fragment *prevPrefixFragments = prevState->GetPrefixFragments();
|
|
|
|
if(prevPrefixLength == 0) {
|
|
newState->SetAsLarge();
|
|
hypoScore += m_lm->sum_bows(state, 0, state.get_count());
|
|
state = prevState->GetRightContext();
|
|
return;
|
|
}
|
|
if(!state.has_context()) {
|
|
newState->SetAsLarge();
|
|
state = prevState->GetRightContext();
|
|
return;
|
|
}
|
|
DALM::Gap gap(state);
|
|
unsigned char prevLen = state.get_count();
|
|
|
|
// score its prefix
|
|
for(size_t prefixPos = 0; prefixPos < prevPrefixLength; prefixPos++) {
|
|
const DALM::Fragment &f = prevPrefixFragments[prefixPos];
|
|
|
|
if (newState->LargeEnough()) {
|
|
float score = m_lm->query(f, state, gap);
|
|
hypoScore += score;
|
|
|
|
if(!gap.is_extended()) {
|
|
state = prevState->GetRightContext();
|
|
return;
|
|
} else if(state.get_count() <= prefixPos+1) {
|
|
state = prevState->GetRightContext();
|
|
return;
|
|
}
|
|
} else {
|
|
DALM::Fragment &fnew = prefixFragments[prefixLength];
|
|
float score = m_lm->query(f, state, gap, fnew);
|
|
hypoScore += score;
|
|
|
|
if(!gap.is_extended()) {
|
|
newState->SetAsLarge();
|
|
state = prevState->GetRightContext();
|
|
return;
|
|
} else if(state.get_count() <= prefixPos+1) {
|
|
if(state.get_count() == prefixPos+1 && !gap.is_finalized()) {
|
|
prefixLength++;
|
|
}
|
|
newState->SetAsLarge();
|
|
state = prevState->GetRightContext();
|
|
return;
|
|
} else if(gap.is_finalized()) {
|
|
newState->SetAsLarge();
|
|
} else {
|
|
prefixLength++;
|
|
if(state.get_count() < std::min(prevLen+1, (int)m_ContextSize)) {
|
|
newState->SetAsLarge();
|
|
}
|
|
|
|
if(prefixLength >= m_ContextSize) newState->SetAsLarge();
|
|
}
|
|
}
|
|
gap.succ();
|
|
prevLen = state.get_count();
|
|
}
|
|
|
|
// check if we are dealing with a large sub-phrase
|
|
if (prevState->LargeEnough()) {
|
|
newState->SetAsLarge();
|
|
//if(prevPrefixLength < prevState->GetHypoSize()) {
|
|
hypoScore += m_lm->sum_bows(state, prevPrefixLength, state.get_count());
|
|
//}
|
|
// copy language model state
|
|
state = prevState->GetRightContext();
|
|
} else {
|
|
m_lm->set_state(state, prevState->GetRightContext(), prevPrefixFragments, gap);
|
|
}
|
|
}
|
|
|
|
}
|