mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-26 13:23:25 +03:00
204 lines
4.1 KiB
C++
204 lines
4.1 KiB
C++
#include "MiraWeightVector.h"
|
|
|
|
#include <cmath>
|
|
|
|
using namespace std;
|
|
|
|
namespace MosesTuning
|
|
{
|
|
|
|
|
|
/**
|
|
* Constructor, initializes to the zero vector
|
|
*/
|
|
MiraWeightVector::MiraWeightVector()
|
|
: m_weights(),
|
|
m_totals(),
|
|
m_lastUpdated()
|
|
{
|
|
m_numUpdates = 0;
|
|
}
|
|
|
|
/**
|
|
* Constructor with provided initial vector
|
|
* \param init Initial feature values
|
|
*/
|
|
MiraWeightVector::MiraWeightVector(const vector<ValType>& init)
|
|
: m_weights(init),
|
|
m_totals(init),
|
|
m_lastUpdated(init.size(), 0)
|
|
{
|
|
m_numUpdates = 0;
|
|
}
|
|
|
|
/**
|
|
* Update a the model
|
|
* \param fv Feature vector to be added to the weights
|
|
* \param tau FV will be scaled by this value before update
|
|
*/
|
|
void MiraWeightVector::update(const MiraFeatureVector& fv, float tau)
|
|
{
|
|
m_numUpdates++;
|
|
for(size_t i=0; i<fv.size(); i++) {
|
|
update(fv.feat(i), fv.val(i)*tau);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform an empty update (affects averaging)
|
|
*/
|
|
void MiraWeightVector::tick()
|
|
{
|
|
m_numUpdates++;
|
|
}
|
|
|
|
/**
|
|
* Score a feature vector according to the model
|
|
* \param fv Feature vector to be scored
|
|
*/
|
|
ValType MiraWeightVector::score(const MiraFeatureVector& fv) const
|
|
{
|
|
ValType toRet = 0.0;
|
|
for(size_t i=0; i<fv.size(); i++) {
|
|
toRet += weight(fv.feat(i)) * fv.val(i);
|
|
}
|
|
return toRet;
|
|
}
|
|
|
|
/**
|
|
* Return an averaged view of this weight vector
|
|
*/
|
|
AvgWeightVector MiraWeightVector::avg()
|
|
{
|
|
this->fixTotals();
|
|
return AvgWeightVector(*this);
|
|
}
|
|
|
|
/**
|
|
* Updates a weight and lazily updates its total
|
|
*/
|
|
void MiraWeightVector::update(size_t index, ValType delta)
|
|
{
|
|
|
|
// Handle previously unseen weights
|
|
while(index>=m_weights.size()) {
|
|
m_weights.push_back(0.0);
|
|
m_totals.push_back(0.0);
|
|
m_lastUpdated.push_back(0);
|
|
}
|
|
|
|
// Book keeping for w = w + delta
|
|
m_totals[index] += (m_numUpdates - m_lastUpdated[index]) * m_weights[index] + delta;
|
|
m_weights[index] += delta;
|
|
m_lastUpdated[index] = m_numUpdates;
|
|
}
|
|
|
|
void MiraWeightVector::ToSparse(SparseVector* sparse, size_t denseSize) const
|
|
{
|
|
for (size_t i = 0; i < m_weights.size(); ++i) {
|
|
if(abs(m_weights[i])>1e-8) {
|
|
if (i < denseSize) {
|
|
sparse->set(i,m_weights[i]);
|
|
} else {
|
|
//The ids in MiraFeatureVector/MiraWeightVector for sparse features
|
|
//need to be translated when converting back to SparseVector.
|
|
sparse->set(i-denseSize, m_weights[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Make sure everyone's total is up-to-date
|
|
*/
|
|
void MiraWeightVector::fixTotals()
|
|
{
|
|
for(size_t i=0; i<m_weights.size(); i++) update(i,0);
|
|
}
|
|
|
|
/**
|
|
* Helper to handle out of range weights
|
|
*/
|
|
ValType MiraWeightVector::weight(size_t index) const
|
|
{
|
|
if(index < m_weights.size()) {
|
|
return m_weights[index];
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
ValType MiraWeightVector::sqrNorm() const
|
|
{
|
|
ValType toRet = 0;
|
|
for(size_t i=0; i<m_weights.size(); i++) {
|
|
toRet += weight(i) * weight(i);
|
|
}
|
|
return toRet;
|
|
}
|
|
|
|
AvgWeightVector::AvgWeightVector(const MiraWeightVector& wv)
|
|
:m_wv(wv)
|
|
{}
|
|
|
|
ostream& operator<<(ostream& o, const MiraWeightVector& e)
|
|
{
|
|
for(size_t i=0; i<e.m_weights.size(); i++) {
|
|
if(abs(e.m_weights[i])>1e-8) {
|
|
if(i>0) o << " ";
|
|
o << i << ":" << e.m_weights[i];
|
|
}
|
|
}
|
|
return o;
|
|
}
|
|
|
|
ValType AvgWeightVector::weight(size_t index) const
|
|
{
|
|
if(m_wv.m_numUpdates==0) return m_wv.weight(index);
|
|
else {
|
|
if(index < m_wv.m_totals.size()) {
|
|
return m_wv.m_totals[index] / m_wv.m_numUpdates;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
ValType AvgWeightVector::score(const MiraFeatureVector& fv) const
|
|
{
|
|
ValType toRet = 0.0;
|
|
for(size_t i=0; i<fv.size(); i++) {
|
|
toRet += weight(fv.feat(i)) * fv.val(i);
|
|
}
|
|
return toRet;
|
|
}
|
|
|
|
size_t AvgWeightVector::size() const
|
|
{
|
|
return m_wv.m_weights.size();
|
|
}
|
|
|
|
void AvgWeightVector::ToSparse(SparseVector* sparse, size_t denseSize) const
|
|
{
|
|
for (size_t i = 0; i < size(); ++i) {
|
|
ValType w = weight(i);
|
|
if(abs(w)>1e-8) {
|
|
if (i < denseSize) {
|
|
sparse->set(i,w);
|
|
} else {
|
|
//The ids in MiraFeatureVector/MiraWeightVector for sparse features
|
|
//need to be translated when converting back to SparseVector.
|
|
sparse->set(i-denseSize, w);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// --Emacs trickery--
|
|
// Local Variables:
|
|
// mode:c++
|
|
// c-basic-offset:2
|
|
// End:
|
|
}
|
|
|