mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-01 08:21:47 +03:00
213 lines
7.0 KiB
C++
213 lines
7.0 KiB
C++
#include "SearchNormalBatch.h"
|
|
#include "LM/Base.h"
|
|
#include "Manager.h"
|
|
#include "Hypothesis.h"
|
|
#include "util/exception.hh"
|
|
|
|
//#include <google/profiler.h>
|
|
|
|
using namespace std;
|
|
|
|
namespace Moses
|
|
{
|
|
SearchNormalBatch::SearchNormalBatch(Manager& manager, const InputType &source, const TranslationOptionCollection &transOptColl)
|
|
:SearchNormal(manager, source, transOptColl)
|
|
,m_batch_size(10000)
|
|
{
|
|
m_max_stack_size = StaticData::Instance().GetMaxHypoStackSize();
|
|
|
|
// Split the feature functions into sets of stateless, stateful
|
|
// distributed lm, and stateful non-distributed.
|
|
const vector<const StatefulFeatureFunction*>& ffs =
|
|
StatefulFeatureFunction::GetStatefulFeatureFunctions();
|
|
for (unsigned i = 0; i < ffs.size(); ++i) {
|
|
if (ffs[i]->GetScoreProducerDescription() == "DLM_5gram") { // TODO WFT
|
|
m_dlm_ffs[i] = const_cast<LanguageModel*>(static_cast<const LanguageModel* const>(ffs[i]));
|
|
m_dlm_ffs[i]->SetFFStateIdx(i);
|
|
} else {
|
|
m_stateful_ffs[i] = const_cast<StatefulFeatureFunction*>(ffs[i]);
|
|
}
|
|
}
|
|
m_stateless_ffs = StatelessFeatureFunction::GetStatelessFeatureFunctions();
|
|
|
|
}
|
|
|
|
SearchNormalBatch::~SearchNormalBatch()
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Main decoder loop that translates a sentence by expanding
|
|
* hypotheses stack by stack, until the end of the sentence.
|
|
*/
|
|
void SearchNormalBatch::ProcessSentence()
|
|
{
|
|
const StaticData &staticData = StaticData::Instance();
|
|
SentenceStats &stats = m_manager.GetSentenceStats();
|
|
|
|
// initial seed hypothesis: nothing translated, no words produced
|
|
Hypothesis *hypo = Hypothesis::Create(m_manager,m_source, m_initialTransOpt);
|
|
m_hypoStackColl[0]->AddPrune(hypo);
|
|
|
|
// go through each stack
|
|
std::vector < HypothesisStack* >::iterator iterStack;
|
|
for (iterStack = m_hypoStackColl.begin() ; iterStack != m_hypoStackColl.end() ; ++iterStack) {
|
|
// check if decoding ran out of time
|
|
double _elapsed_time = GetUserTime();
|
|
if (_elapsed_time > staticData.GetTimeoutThreshold()) {
|
|
VERBOSE(1,"Decoding is out of time (" << _elapsed_time << "," << staticData.GetTimeoutThreshold() << ")" << std::endl);
|
|
interrupted_flag = 1;
|
|
return;
|
|
}
|
|
HypothesisStackNormal &sourceHypoColl = *static_cast<HypothesisStackNormal*>(*iterStack);
|
|
|
|
// the stack is pruned before processing (lazy pruning):
|
|
VERBOSE(3,"processing hypothesis from next stack");
|
|
IFVERBOSE(2) {
|
|
stats.StartTimeStack();
|
|
}
|
|
sourceHypoColl.PruneToSize(staticData.GetMaxHypoStackSize());
|
|
VERBOSE(3,std::endl);
|
|
sourceHypoColl.CleanupArcList();
|
|
IFVERBOSE(2) {
|
|
stats.StopTimeStack();
|
|
}
|
|
|
|
// go through each hypothesis on the stack and try to expand it
|
|
HypothesisStackNormal::const_iterator iterHypo;
|
|
for (iterHypo = sourceHypoColl.begin() ; iterHypo != sourceHypoColl.end() ; ++iterHypo) {
|
|
Hypothesis &hypothesis = **iterHypo;
|
|
ProcessOneHypothesis(hypothesis); // expand the hypothesis
|
|
}
|
|
EvalAndMergePartialHypos();
|
|
|
|
// some logging
|
|
IFVERBOSE(2) {
|
|
OutputHypoStackSize();
|
|
}
|
|
|
|
// this stack is fully expanded;
|
|
actual_hypoStack = &sourceHypoColl;
|
|
}
|
|
|
|
EvalAndMergePartialHypos();
|
|
}
|
|
|
|
/**
|
|
* Expand one hypothesis with a translation option.
|
|
* this involves initial creation, scoring and adding it to the proper stack
|
|
* \param hypothesis hypothesis to be expanded upon
|
|
* \param transOpt translation option (phrase translation)
|
|
* that is applied to create the new hypothesis
|
|
* \param expectedScore base score for early discarding
|
|
* (base hypothesis score plus future score estimation)
|
|
*/
|
|
|
|
void
|
|
SearchNormalBatch::
|
|
ExpandHypothesis(const Hypothesis &hypothesis,
|
|
const TranslationOption &transOpt, float expectedScore)
|
|
{
|
|
// Check if the number of partial hypotheses exceeds the batch size.
|
|
if (m_partial_hypos.size() >= m_batch_size) {
|
|
EvalAndMergePartialHypos();
|
|
}
|
|
|
|
const StaticData &staticData = StaticData::Instance();
|
|
SentenceStats &stats = m_manager.GetSentenceStats();
|
|
|
|
Hypothesis *newHypo;
|
|
if (! staticData.UseEarlyDiscarding()) {
|
|
// simple build, no questions asked
|
|
IFVERBOSE(2) {
|
|
stats.StartTimeBuildHyp();
|
|
}
|
|
newHypo = hypothesis.CreateNext(transOpt);
|
|
IFVERBOSE(2) {
|
|
stats.StopTimeBuildHyp();
|
|
}
|
|
if (newHypo==NULL) return;
|
|
//newHypo->Evaluate(m_transOptColl.GetFutureScore());
|
|
|
|
// Issue DLM requests for new hypothesis and put into the list of
|
|
// partial hypotheses.
|
|
std::map<int, LanguageModel*>::iterator dlm_iter;
|
|
for (dlm_iter = m_dlm_ffs.begin();
|
|
dlm_iter != m_dlm_ffs.end();
|
|
++dlm_iter) {
|
|
const FFState* input_state = newHypo->GetPrevHypo() ? newHypo->GetPrevHypo()->GetFFState((*dlm_iter).first) : NULL;
|
|
(*dlm_iter).second->IssueRequestsFor(*newHypo, input_state);
|
|
}
|
|
m_partial_hypos.push_back(newHypo);
|
|
} else {
|
|
UTIL_THROW2("can't use early discarding with batch decoding!");
|
|
}
|
|
}
|
|
|
|
void SearchNormalBatch::EvalAndMergePartialHypos()
|
|
{
|
|
std::vector<Hypothesis*>::iterator partial_hypo_iter;
|
|
for (partial_hypo_iter = m_partial_hypos.begin();
|
|
partial_hypo_iter != m_partial_hypos.end();
|
|
++partial_hypo_iter) {
|
|
Hypothesis* hypo = *partial_hypo_iter;
|
|
|
|
// Evaluate with other ffs.
|
|
std::map<int, StatefulFeatureFunction*>::iterator sfff_iter;
|
|
for (sfff_iter = m_stateful_ffs.begin();
|
|
sfff_iter != m_stateful_ffs.end();
|
|
++sfff_iter) {
|
|
const StatefulFeatureFunction &ff = *(sfff_iter->second);
|
|
int state_idx = sfff_iter->first;
|
|
hypo->EvaluateWith(ff, state_idx);
|
|
}
|
|
std::vector<const StatelessFeatureFunction*>::iterator slff_iter;
|
|
for (slff_iter = m_stateless_ffs.begin();
|
|
slff_iter != m_stateless_ffs.end();
|
|
++slff_iter) {
|
|
hypo->EvaluateWith(**slff_iter);
|
|
}
|
|
}
|
|
|
|
// Wait for all requests from the distributed LM to come back.
|
|
std::map<int, LanguageModel*>::iterator dlm_iter;
|
|
for (dlm_iter = m_dlm_ffs.begin();
|
|
dlm_iter != m_dlm_ffs.end();
|
|
++dlm_iter) {
|
|
(*dlm_iter).second->sync();
|
|
}
|
|
|
|
// Incorporate the DLM scores into all hypotheses and put into their
|
|
// stacks.
|
|
for (partial_hypo_iter = m_partial_hypos.begin();
|
|
partial_hypo_iter != m_partial_hypos.end();
|
|
++partial_hypo_iter) {
|
|
Hypothesis* hypo = *partial_hypo_iter;
|
|
|
|
// Calculate DLM scores.
|
|
std::map<int, LanguageModel*>::iterator dlm_iter;
|
|
for (dlm_iter = m_dlm_ffs.begin();
|
|
dlm_iter != m_dlm_ffs.end();
|
|
++dlm_iter) {
|
|
LanguageModel &lm = *(dlm_iter->second);
|
|
hypo->EvaluateWith(lm, (*dlm_iter).first);
|
|
}
|
|
|
|
// Put completed hypothesis onto its stack.
|
|
size_t wordsTranslated = hypo->GetWordsBitmap().GetNumWordsCovered();
|
|
m_hypoStackColl[wordsTranslated]->AddPrune(hypo);
|
|
}
|
|
m_partial_hypos.clear();
|
|
|
|
std::vector < HypothesisStack* >::iterator stack_iter;
|
|
HypothesisStackNormal* stack;
|
|
for (stack_iter = m_hypoStackColl.begin();
|
|
stack_iter != m_hypoStackColl.end();
|
|
++stack_iter) {
|
|
stack = static_cast<HypothesisStackNormal*>(*stack_iter);
|
|
stack->PruneToSize(m_max_stack_size);
|
|
}
|
|
}
|
|
|
|
}
|