mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-08 20:46:59 +03:00
154 lines
4.9 KiB
C++
154 lines
4.9 KiB
C++
//
|
|
// SentenceLevelScorer.cpp
|
|
// mert_lib
|
|
//
|
|
// Created by Hieu Hoang on 22/06/2012.
|
|
// Copyright 2012 __MyCompanyName__. All rights reserved.
|
|
//
|
|
|
|
#include "SentenceLevelScorer.h"
|
|
|
|
#include <iostream>
|
|
#include <boost/spirit/home/support/detail/lexer/runtime_error.hpp>
|
|
|
|
using namespace std;
|
|
|
|
namespace MosesTuning
|
|
{
|
|
|
|
SentenceLevelScorer::SentenceLevelScorer(const string& name, const string& config)
|
|
: Scorer(name, config),
|
|
m_regularisationStrategy(REG_NONE),
|
|
m_regularisationWindow(0)
|
|
{
|
|
Init();
|
|
}
|
|
|
|
SentenceLevelScorer::~SentenceLevelScorer() {}
|
|
|
|
void SentenceLevelScorer::Init()
|
|
{
|
|
// Configure regularisation.
|
|
static string KEY_TYPE = "regtype";
|
|
static string KEY_WINDOW = "regwin";
|
|
static string KEY_CASE = "case";
|
|
static string TYPE_NONE = "none";
|
|
static string TYPE_AVERAGE = "average";
|
|
static string TYPE_MINIMUM = "min";
|
|
static string TRUE = "true";
|
|
static string FALSE = "false";
|
|
|
|
const string type = getConfig(KEY_TYPE, TYPE_NONE);
|
|
if (type == TYPE_NONE) {
|
|
m_regularisationStrategy = REG_NONE;
|
|
} else if (type == TYPE_AVERAGE) {
|
|
m_regularisationStrategy = REG_AVERAGE;
|
|
} else if (type == TYPE_MINIMUM) {
|
|
m_regularisationStrategy = REG_MINIMUM;
|
|
} else {
|
|
throw boost::lexer::runtime_error("Unknown scorer regularisation strategy: " + type);
|
|
}
|
|
cerr << "Using scorer regularisation strategy: " << type << endl;
|
|
|
|
const string window = getConfig(KEY_WINDOW, "0");
|
|
m_regularisationWindow = atoi(window.c_str());
|
|
cerr << "Using scorer regularisation window: " << m_regularisationWindow << endl;
|
|
|
|
const string preservecase = getConfig(KEY_CASE, TRUE);
|
|
if (preservecase == TRUE) {
|
|
m_enable_preserve_case = true;
|
|
} else if (preservecase == FALSE) {
|
|
m_enable_preserve_case = false;
|
|
}
|
|
cerr << "Using case preservation: " << m_enable_preserve_case << endl;
|
|
}
|
|
|
|
void SentenceLevelScorer::score(const candidates_t& candidates, const diffs_t& diffs,
|
|
statscores_t& scores)
|
|
{
|
|
//cout << "*******SentenceLevelScorer::score" << endl;
|
|
if (!m_score_data) {
|
|
throw runtime_error("Score data not loaded");
|
|
}
|
|
//calculate the score for the candidates
|
|
if (m_score_data->size() == 0) {
|
|
throw runtime_error("Score data is empty");
|
|
}
|
|
if (candidates.size() == 0) {
|
|
throw runtime_error("No candidates supplied");
|
|
}
|
|
const int numCounts = m_score_data->get(0,candidates[0]).size();
|
|
vector<float> totals(numCounts);
|
|
for (size_t i = 0; i < candidates.size(); ++i) {
|
|
//cout << " i " << i << " candi " << candidates[i] ;
|
|
ScoreStats stats = m_score_data->get(i,candidates[i]);
|
|
if (stats.size() != totals.size()) {
|
|
stringstream msg;
|
|
msg << "Statistics for (" << "," << candidates[i] << ") have incorrect "
|
|
<< "number of fields. Found: " << stats.size() << " Expected: "
|
|
<< totals.size();
|
|
throw runtime_error(msg.str());
|
|
}
|
|
//Add up scores for all sentences, would normally be just one score
|
|
for (size_t k = 0; k < totals.size(); ++k) {
|
|
totals[k] += stats.get(k);
|
|
//cout << " stats " << stats.get(k) ;
|
|
}
|
|
//cout << endl;
|
|
}
|
|
//take average
|
|
for (size_t k = 0; k < totals.size(); ++k) {
|
|
//cout << "totals = " << totals[k] << endl;
|
|
//cout << "cand = " << candidates.size() << endl;
|
|
totals[k] /= candidates.size();
|
|
//cout << "finaltotals = " << totals[k] << endl;
|
|
}
|
|
|
|
scores.push_back(calculateScore(totals));
|
|
|
|
candidates_t last_candidates(candidates);
|
|
//apply each of the diffs, and get new scores
|
|
for (size_t i = 0; i < diffs.size(); ++i) {
|
|
for (size_t j = 0; j < diffs[i].size(); ++j) {
|
|
const size_t sid = diffs[i][j].first;
|
|
const size_t nid = diffs[i][j].second;
|
|
//cout << "sid = " << sid << endl;
|
|
//cout << "nid = " << nid << endl;
|
|
const size_t last_nid = last_candidates[sid];
|
|
for (size_t k = 0; k < totals.size(); ++k) {
|
|
const float diff = m_score_data->get(sid,nid).get(k)
|
|
- m_score_data->get(sid,last_nid).get(k);
|
|
//cout << "diff = " << diff << endl;
|
|
totals[k] += diff/candidates.size();
|
|
//cout << "totals = " << totals[k] << endl;
|
|
}
|
|
last_candidates[sid] = nid;
|
|
}
|
|
scores.push_back(calculateScore(totals));
|
|
}
|
|
|
|
//regularisation. This can either be none, or the min or average as described in
|
|
//Cer, Jurafsky and Manning at WMT08
|
|
if (m_regularisationStrategy == REG_NONE || m_regularisationWindow <= 0) {
|
|
//no regularisation
|
|
return;
|
|
}
|
|
|
|
//window size specifies the +/- in each direction
|
|
statscores_t raw_scores(scores);//copy scores
|
|
for (size_t i = 0; i < scores.size(); ++i) {
|
|
size_t start = 0;
|
|
if (i >= m_regularisationWindow) {
|
|
start = i - m_regularisationWindow;
|
|
}
|
|
const size_t end = min(scores.size(), i + m_regularisationWindow+1);
|
|
if (m_regularisationStrategy == REG_AVERAGE) {
|
|
scores[i] = score_average(raw_scores, start, end);
|
|
} else {
|
|
scores[i] = score_min(raw_scores, start, end);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|