mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-11-10 10:59:21 +03:00
29c16d252a
Should use it in .cpp files.
131 lines
3.2 KiB
C++
131 lines
3.2 KiB
C++
#ifndef OPTIMIZER_H
|
|
#define OPTIMIZER_H
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
#include "FeatureData.h"
|
|
#include "Scorer.h"
|
|
#include "Types.h"
|
|
|
|
using namespace std;
|
|
|
|
typedef float featurescore;
|
|
|
|
class Point;
|
|
|
|
/**
|
|
* Abstract optimizer class.
|
|
*/
|
|
class Optimizer
|
|
{
|
|
protected:
|
|
Scorer *scorer; // no accessor for them only child can use them
|
|
FeatureData *FData; // no accessor for them only child can use them
|
|
unsigned int number_of_random_directions;
|
|
|
|
public:
|
|
Optimizer(unsigned Pd, vector<unsigned> i2O, vector<parameter_t> start, unsigned int nrandom);
|
|
void SetScorer(Scorer *_scorer);
|
|
void SetFData(FeatureData *_FData);
|
|
virtual ~Optimizer();
|
|
|
|
unsigned size() const {
|
|
return FData ? FData->size() : 0;
|
|
}
|
|
|
|
/**
|
|
* Generic wrapper around TrueRun to check a few things. Non virtual.
|
|
*/
|
|
statscore_t Run(Point&) const;
|
|
|
|
/**
|
|
* Main function that performs an optimization.
|
|
*/
|
|
virtual statscore_t TrueRun(Point&) const = 0;
|
|
|
|
/**
|
|
* Given a set of lambdas, get the nbest for each sentence.
|
|
*/
|
|
void Get1bests(const Point& param,vector<unsigned>& bests) const;
|
|
|
|
/**
|
|
* Given a set of nbests, get the Statistical score.
|
|
*/
|
|
statscore_t GetStatScore(const vector<unsigned>& nbests) const {
|
|
return scorer->score(nbests);
|
|
}
|
|
|
|
statscore_t GetStatScore(const Point& param) const;
|
|
|
|
vector<statscore_t> GetIncStatScore(vector<unsigned> ref, vector<vector<pair<unsigned,unsigned> > >) const;
|
|
|
|
/**
|
|
* Get the optimal Lambda and the best score in a particular direction from a given Point.
|
|
*/
|
|
statscore_t LineOptimize(const Point& start, const Point& direction, Point& best) const;
|
|
};
|
|
|
|
|
|
/**
|
|
* Default basic optimizer.
|
|
* This class implements Powell's method.
|
|
*/
|
|
class SimpleOptimizer : public Optimizer
|
|
{
|
|
private:
|
|
const float kEPS;
|
|
public:
|
|
SimpleOptimizer(unsigned dim, vector<unsigned> i2O, vector<parameter_t> start, unsigned int nrandom)
|
|
: Optimizer(dim, i2O, start,nrandom), kEPS(0.0001) {}
|
|
virtual statscore_t TrueRun(Point&) const;
|
|
};
|
|
|
|
/**
|
|
* An optimizer with random directions.
|
|
*/
|
|
class RandomDirectionOptimizer : public Optimizer
|
|
{
|
|
private:
|
|
const float kEPS;
|
|
public:
|
|
RandomDirectionOptimizer(unsigned dim, vector<unsigned> i2O, vector<parameter_t> start, unsigned int nrandom)
|
|
: Optimizer(dim, i2O, start, nrandom), kEPS(0.0001) {}
|
|
virtual statscore_t TrueRun(Point&) const;
|
|
};
|
|
|
|
/**
|
|
* Dumb baseline optimizer: just picks a random point and quits.
|
|
*/
|
|
class RandomOptimizer : public Optimizer
|
|
{
|
|
public:
|
|
RandomOptimizer(unsigned dim, vector<unsigned> i2O, vector<parameter_t> start, unsigned int nrandom)
|
|
: Optimizer(dim, i2O, start, nrandom) {}
|
|
virtual statscore_t TrueRun(Point&) const;
|
|
};
|
|
|
|
class OptimizerFactory
|
|
{
|
|
public:
|
|
static vector<string> GetTypeNames();
|
|
static Optimizer* BuildOptimizer(unsigned dim, vector<unsigned> tooptimize, vector<parameter_t> start, string type, unsigned int nrandom);
|
|
|
|
private:
|
|
OptimizerFactory() {}
|
|
~OptimizerFactory() {}
|
|
|
|
// Add new optimizer here BEFORE NOPTIMZER
|
|
enum OptType {
|
|
POWELL = 0,
|
|
RANDOM_DIRECTION = 1,
|
|
RANDOM,
|
|
NOPTIMIZER
|
|
};
|
|
|
|
static OptType GetOType(string);
|
|
static vector<string> typenames;
|
|
static void SetTypeNames();
|
|
};
|
|
|
|
#endif // OPTIMIZER_H
|