mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-11-10 10:59:21 +03:00
2bfeb39ba6
- Fix a warning, too.
266 lines
8.6 KiB
C++
266 lines
8.6 KiB
C++
// $Id$
|
|
// vim:tabstop=2
|
|
|
|
/***********************************************************************
|
|
Moses - factored phrase-based language decoder
|
|
Copyright (C) 2011- University of Edinburgh
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
***********************************************************************/
|
|
|
|
|
|
/**
|
|
* This is part of the PRO implementation. It converts the features and scores
|
|
* files into a form suitable for input into the megam maxent trainer.
|
|
*
|
|
* For details of PRO, refer to Hopkins & May (EMNLP 2011)
|
|
**/
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <ctime>
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <utility>
|
|
|
|
#include <boost/program_options.hpp>
|
|
|
|
#include "BleuScorer.h"
|
|
#include "FeatureDataIterator.h"
|
|
#include "ScoreDataIterator.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace po = boost::program_options;
|
|
|
|
class SampledPair {
|
|
private:
|
|
pair<size_t,size_t> m_translation1;
|
|
pair<size_t,size_t> m_translation2;
|
|
float m_score_diff;
|
|
|
|
public:
|
|
SampledPair(const pair<size_t,size_t>& t1, const pair<size_t,size_t>& t2, float diff ) {
|
|
if (diff > 0) {
|
|
m_translation1 = t1;
|
|
m_translation2 = t2;
|
|
m_score_diff = diff;
|
|
} else {
|
|
m_translation1 = t2;
|
|
m_translation2 = t1;
|
|
m_score_diff = -diff;
|
|
}
|
|
}
|
|
|
|
float getDiff() const { return m_score_diff; }
|
|
const pair<size_t,size_t>& getTranslation1() const { return m_translation1; }
|
|
const pair<size_t,size_t>& getTranslation2() const { return m_translation2; }
|
|
};
|
|
|
|
|
|
static float sentenceLevelBleuPlusOne(const vector<float>& stats) {
|
|
float logbleu = 0.0;
|
|
for (int j = 0; j < kBleuNgramOrder; j++) {
|
|
//cerr << (stats.get(2*j)+1) << "/" << (stats.get(2*j+1)+1) << " ";
|
|
logbleu += log(stats[2*j]+1) - log(stats[2*j+1]+1);
|
|
}
|
|
logbleu /= kBleuNgramOrder;
|
|
const float brevity = 1.0 - static_cast<float>(stats[(kBleuNgramOrder * 2)]) / stats[1];
|
|
if (brevity < 0.0) {
|
|
logbleu += brevity;
|
|
}
|
|
//cerr << brevity << " -> " << exp(logbleu) << endl;
|
|
return exp(logbleu);
|
|
}
|
|
|
|
static void outputSample(ostream& out, const FeatureDataItem& f1, const FeatureDataItem& f2) {
|
|
// difference in score in regular features
|
|
for(unsigned int j=0; j<f1.dense.size(); j++)
|
|
if (abs(f1.dense[j]-f2.dense[j]) > 0.00001)
|
|
out << " F" << j << " " << (f1.dense[j]-f2.dense[j]);
|
|
|
|
if (f1.sparse.size() || f2.sparse.size()) {
|
|
out << " ";
|
|
|
|
// sparse features
|
|
const SparseVector &s1 = f1.sparse;
|
|
const SparseVector &s2 = f2.sparse;
|
|
SparseVector diff = s1 - s2;
|
|
diff.write(out);
|
|
}
|
|
}
|
|
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
bool help;
|
|
vector<string> scoreFiles;
|
|
vector<string> featureFiles;
|
|
int seed;
|
|
string outputFile;
|
|
// TODO: Add these constants to options
|
|
const unsigned int n_candidates = 5000; // Gamma, in Hopkins & May
|
|
const unsigned int n_samples = 50; // Xi, in Hopkins & May
|
|
const float min_diff = 0.05;
|
|
|
|
po::options_description desc("Allowed options");
|
|
desc.add_options()
|
|
("help,h", po::value(&help)->zero_tokens()->default_value(false), "Print this help message and exit")
|
|
("scfile,S", po::value<vector<string> >(&scoreFiles), "Scorer data files")
|
|
("ffile,F", po::value<vector<string> > (&featureFiles), "Feature data files")
|
|
("random-seed,r", po::value<int>(&seed), "Seed for random number generation")
|
|
("output-file,o", po::value<string>(&outputFile), "Output file")
|
|
;
|
|
|
|
po::options_description cmdline_options;
|
|
cmdline_options.add(desc);
|
|
po::variables_map vm;
|
|
po::store(po::command_line_parser(argc,argv).
|
|
options(cmdline_options).run(), vm);
|
|
po::notify(vm);
|
|
if (help) {
|
|
cout << "Usage: " + string(argv[0]) + " [options]" << endl;
|
|
cout << desc << endl;
|
|
exit(0);
|
|
}
|
|
|
|
if (vm.count("random-seed")) {
|
|
cerr << "Initialising random seed to " << seed << endl;
|
|
srand(seed);
|
|
} else {
|
|
cerr << "Initialising random seed from system clock" << endl;
|
|
srand(time(NULL));
|
|
}
|
|
|
|
if (scoreFiles.size() == 0 || featureFiles.size() == 0) {
|
|
cerr << "No data to process" << endl;
|
|
exit(0);
|
|
}
|
|
|
|
if (featureFiles.size() != scoreFiles.size()) {
|
|
cerr << "Error: Number of feature files (" << featureFiles.size() <<
|
|
") does not match number of score files (" << scoreFiles.size() << ")" << endl;
|
|
exit(1);
|
|
}
|
|
|
|
ostream* out;
|
|
ofstream outFile;
|
|
if (!outputFile.empty() ) {
|
|
outFile.open(outputFile.c_str());
|
|
if (!(outFile)) {
|
|
cerr << "Error: Failed to open " << outputFile << endl;
|
|
exit(1);
|
|
}
|
|
out = &outFile;
|
|
} else {
|
|
out = &cout;
|
|
}
|
|
|
|
|
|
vector<FeatureDataIterator> featureDataIters;
|
|
vector<ScoreDataIterator> scoreDataIters;
|
|
for (size_t i = 0; i < featureFiles.size(); ++i) {
|
|
featureDataIters.push_back(FeatureDataIterator(featureFiles[i]));
|
|
scoreDataIters.push_back(ScoreDataIterator(scoreFiles[i]));
|
|
}
|
|
|
|
//loop through nbest lists
|
|
size_t sentenceId = 0;
|
|
while(1) {
|
|
vector<pair<size_t,size_t> > hypotheses;
|
|
//TODO: de-deuping. Collect hashes of score,feature pairs and
|
|
//only add index if it's unique.
|
|
if (featureDataIters[0] == FeatureDataIterator::end()) {
|
|
break;
|
|
}
|
|
for (size_t i = 0; i < featureFiles.size(); ++i) {
|
|
if (featureDataIters[i] == FeatureDataIterator::end()) {
|
|
cerr << "Error: Feature file " << i << " ended prematurely" << endl;
|
|
exit(1);
|
|
}
|
|
if (scoreDataIters[i] == ScoreDataIterator::end()) {
|
|
cerr << "Error: Score file " << i << " ended prematurely" << endl;
|
|
exit(1);
|
|
}
|
|
if (featureDataIters[i]->size() != scoreDataIters[i]->size()) {
|
|
cerr << "Error: For sentence " << sentenceId << " features and scores have different size" << endl;
|
|
exit(1);
|
|
}
|
|
for (size_t j = 0; j < featureDataIters[i]->size(); ++j) {
|
|
hypotheses.push_back(pair<size_t,size_t>(i,j));
|
|
}
|
|
}
|
|
|
|
//collect the candidates
|
|
vector<SampledPair> samples;
|
|
vector<float> scores;
|
|
size_t n_translations = hypotheses.size();
|
|
for(size_t i=0; i<n_candidates; i++) {
|
|
size_t rand1 = rand() % n_translations;
|
|
pair<size_t,size_t> translation1 = hypotheses[rand1];
|
|
float bleu1 = sentenceLevelBleuPlusOne(scoreDataIters[translation1.first]->operator[](translation1.second));
|
|
|
|
size_t rand2 = rand() % n_translations;
|
|
pair<size_t,size_t> translation2 = hypotheses[rand2];
|
|
float bleu2 = sentenceLevelBleuPlusOne(scoreDataIters[translation2.first]->operator[](translation2.second));
|
|
|
|
/*
|
|
cerr << "t(" << translation1.first << "," << translation1.second << ") = " << bleu1 <<
|
|
" t(" << translation2.first << "," << translation2.second << ") = " <<
|
|
bleu2 << " diff = " << abs(bleu1-bleu2) << endl;
|
|
*/
|
|
if (abs(bleu1-bleu2) < min_diff)
|
|
continue;
|
|
|
|
samples.push_back(SampledPair(translation1, translation2, bleu1-bleu2));
|
|
scores.push_back(1.0-abs(bleu1-bleu2));
|
|
}
|
|
|
|
float sample_threshold = -1.0;
|
|
if (samples.size() > n_samples) {
|
|
nth_element(scores.begin(), scores.begin() + (n_samples-1), scores.end());
|
|
sample_threshold = 0.99999-scores[n_samples-1];
|
|
}
|
|
|
|
size_t collected = 0;
|
|
for (size_t i = 0; collected < n_samples && i < samples.size(); ++i) {
|
|
if (samples[i].getDiff() < sample_threshold) continue;
|
|
++collected;
|
|
size_t file_id1 = samples[i].getTranslation1().first;
|
|
size_t hypo_id1 = samples[i].getTranslation1().second;
|
|
size_t file_id2 = samples[i].getTranslation2().first;
|
|
size_t hypo_id2 = samples[i].getTranslation2().second;
|
|
*out << "1";
|
|
outputSample(*out, featureDataIters[file_id1]->operator[](hypo_id1),
|
|
featureDataIters[file_id2]->operator[](hypo_id2));
|
|
*out << endl;
|
|
*out << "0";
|
|
outputSample(*out, featureDataIters[file_id2]->operator[](hypo_id2),
|
|
featureDataIters[file_id1]->operator[](hypo_id1));
|
|
*out << endl;
|
|
}
|
|
//advance all iterators
|
|
for (size_t i = 0; i < featureFiles.size(); ++i) {
|
|
++featureDataIters[i];
|
|
++scoreDataIters[i];
|
|
}
|
|
++sentenceId;
|
|
}
|
|
|
|
outFile.close();
|
|
|
|
}
|