mosesdecoder/moses/FeatureFunction.h
2013-02-21 20:03:35 +00:00

211 lines
7.0 KiB
C++

#ifndef moses_FeatureFunction_h
#define moses_FeatureFunction_h
#include <vector>
#include <set>
#include <string>
namespace Moses
{
class TargetPhrase;
class TranslationOption;
class Hypothesis;
class ChartHypothesis;
class FFState;
class InputType;
class ScoreComponentCollection;
class WordsBitmap;
class WordsRange;
/**
* Contains all that a feature function can access without affecting recombination.
* For stateless features, this is all that it can access. Currently this is not
* used for stateful features, as it would need to be retro-fitted to the LM feature.
* TODO: Expose source segmentation,lattice path.
* XXX Don't add anything to the context that would break recombination XXX
**/
class PhraseBasedFeatureContext
{
// The context either has a hypothesis (during search), or a TranslationOption and
// source sentence (during pre-calculation).
const Hypothesis* m_hypothesis;
const TranslationOption& m_translationOption;
const InputType& m_source;
public:
PhraseBasedFeatureContext(const Hypothesis* hypothesis);
PhraseBasedFeatureContext(const TranslationOption& translationOption,
const InputType& source);
const TranslationOption& GetTranslationOption() const;
const InputType& GetSource() const;
const TargetPhrase& GetTargetPhrase() const; //convenience method
const WordsBitmap& GetWordsBitmap() const;
};
/**
* Same as PhraseBasedFeatureContext, but for chart-based Moses.
**/
class ChartBasedFeatureContext
{
//The context either has a hypothesis (during search) or a
//TargetPhrase and source sentence (during pre-calculation)
//TODO: should the context also include some info on where the TargetPhrase
//is anchored (assuming it's lexicalised), which is available at pre-calc?
const ChartHypothesis* m_hypothesis;
const TargetPhrase& m_targetPhrase;
const InputType& m_source;
public:
ChartBasedFeatureContext(const ChartHypothesis* hypothesis);
ChartBasedFeatureContext(const TargetPhrase& targetPhrase,
const InputType& source);
const InputType& GetSource() const;
const TargetPhrase& GetTargetPhrase() const;
};
/** base class for all feature functions.
* @todo is this for pb & hiero too?
*/
class FeatureFunction
{
protected:
/**< all the score producers in this run */
static std::vector<FeatureFunction*> m_producers;
std::string m_description, m_argLine;
std::vector<std::vector<std::string> > m_args;
bool m_reportSparseFeatures;
size_t m_numScoreComponents;
//In case there's multiple producers with the same description
static std::multiset<std::string> description_counts;
void ParseLine(const std::string& description, const std::string &line);
size_t FindNumFeatures();
public:
static const std::vector<FeatureFunction*>& GetFeatureFunctions() { return m_producers; }
FeatureFunction(const std::string& description, const std::string &line);
FeatureFunction(const std::string& description, size_t numScoreComponents, const std::string &line);
virtual bool IsStateless() const = 0;
virtual ~FeatureFunction();
static const size_t unlimited;
static void ResetDescriptionCounts() {
description_counts.clear();
}
//! returns the number of scores that a subclass produces.
//! For example, a language model conventionally produces 1, a translation table some arbitrary number, etc
//! sparse features returned unlimited
size_t GetNumScoreComponents() const {return m_numScoreComponents;}
//! returns a string description of this producer
const std::string& GetScoreProducerDescription() const
{ return m_description; }
void SetSparseFeatureReporting() { m_reportSparseFeatures = true; }
bool GetSparseFeatureReporting() const { return m_reportSparseFeatures; }
virtual float GetSparseProducerWeight() const { return 1; }
virtual bool IsTuneable() const { return true; }
//!
virtual void InitializeForInput(InputType const& source)
{}
// clean up temporary memory, called after processing each sentence
virtual void CleanUpAfterSentenceProcessing(const InputType& source)
{}
const std::string &GetArgLine() const
{ return m_argLine; }
};
/** base class for all stateless feature functions.
* eg. phrase table, word penalty, phrase penalty
*/
class StatelessFeatureFunction: public FeatureFunction
{
//All stateless FFs, except those that cache scores in T-Option
static std::vector<const StatelessFeatureFunction*> m_statelessFFs;
public:
static const std::vector<const StatelessFeatureFunction*>& GetStatelessFeatureFunctions() {return m_statelessFFs;}
StatelessFeatureFunction(const std::string& description, const std::string &line);
StatelessFeatureFunction(const std::string& description, size_t numScoreComponents, const std::string &line);
/**
* This should be implemented for features that apply to phrase-based models.
**/
virtual void Evaluate(const PhraseBasedFeatureContext& context,
ScoreComponentCollection* accumulator) const = 0;
/**
* Same for chart-based features.
**/
virtual void EvaluateChart(const ChartBasedFeatureContext& context,
ScoreComponentCollection* accumulator) const = 0;
//If true, then the feature is evaluated before search begins, and stored in
//the TranslationOptionCollection.
virtual bool ComputeValueInTranslationOption() const;
//!If true, the feature is stored in the ttable, so gets copied into the
//TargetPhrase and does not need cached in the TranslationOption
virtual bool ComputeValueInTranslationTable() const {return false;}
bool IsStateless() const;
};
/** base class for all stateful feature functions.
* eg. LM, distortion penalty
*/
class StatefulFeatureFunction: public FeatureFunction
{
//All statefull FFs
static std::vector<const StatefulFeatureFunction*> m_statefulFFs;
public:
static const std::vector<const StatefulFeatureFunction*>& GetStatefulFeatureFunctions() {return m_statefulFFs;}
StatefulFeatureFunction(const std::string& description, const std::string &line);
StatefulFeatureFunction(const std::string& description, size_t numScoreComponents, const std::string &line);
/**
* \brief This interface should be implemented.
* Notes: When evaluating the value of this feature function, you should avoid
* calling hypo.GetPrevHypo(). If you need something from the "previous"
* hypothesis, you should store it in an FFState object which will be passed
* in as prev_state. If you don't do this, you will get in trouble.
*/
virtual FFState* Evaluate(
const Hypothesis& cur_hypo,
const FFState* prev_state,
ScoreComponentCollection* accumulator) const = 0;
virtual FFState* EvaluateChart(
const ChartHypothesis& /* cur_hypo */,
int /* featureID - used to index the state in the previous hypotheses */,
ScoreComponentCollection* accumulator) const = 0;
//! return the state associated with the empty hypothesis for a given sentence
virtual const FFState* EmptyHypothesisState(const InputType &input) const = 0;
bool IsStateless() const;
};
}
#endif