mosesdecoder/lm/model.hh
2012-01-14 17:07:31 +00:00

184 lines
7.3 KiB
C++

#ifndef LM_MODEL__
#define LM_MODEL__
#include "lm/bhiksha.hh"
#include "lm/binary_format.hh"
#include "lm/config.hh"
#include "lm/facade.hh"
#include "lm/max_order.hh"
#include "lm/quantize.hh"
#include "lm/search_hashed.hh"
#include "lm/search_trie.hh"
#include "lm/vocab.hh"
#include "lm/weights.hh"
#include "util/murmur_hash.hh"
#include <algorithm>
#include <vector>
#include <string.h>
namespace util { class FilePiece; }
namespace lm {
namespace ngram {
// This is a POD but if you want memcmp to return the same as operator==, call
// ZeroRemaining first.
class State {
public:
bool operator==(const State &other) const {
if (length != other.length) return false;
return !memcmp(words, other.words, length * sizeof(WordIndex));
}
// Three way comparison function.
int Compare(const State &other) const {
if (length != other.length) return length < other.length ? -1 : 1;
return memcmp(words, other.words, length * sizeof(WordIndex));
}
bool operator<(const State &other) const {
if (length != other.length) return length < other.length;
return memcmp(words, other.words, length * sizeof(WordIndex)) < 0;
}
// Call this before using raw memcmp.
void ZeroRemaining() {
for (unsigned char i = length; i < kMaxOrder - 1; ++i) {
words[i] = 0;
backoff[i] = 0.0;
}
}
unsigned char Length() const { return length; }
// You shouldn't need to touch anything below this line, but the members are public so FullState will qualify as a POD.
// This order minimizes total size of the struct if WordIndex is 64 bit, float is 32 bit, and alignment of 64 bit integers is 64 bit.
WordIndex words[kMaxOrder - 1];
float backoff[kMaxOrder - 1];
unsigned char length;
};
inline size_t hash_value(const State &state) {
return util::MurmurHashNative(state.words, sizeof(WordIndex) * state.length);
}
namespace detail {
// Should return the same results as SRI.
// ModelFacade typedefs Vocabulary so we use VocabularyT to avoid naming conflicts.
template <class Search, class VocabularyT> class GenericModel : public base::ModelFacade<GenericModel<Search, VocabularyT>, State, VocabularyT> {
private:
typedef base::ModelFacade<GenericModel<Search, VocabularyT>, State, VocabularyT> P;
public:
// This is the model type returned by RecognizeBinary.
static const ModelType kModelType;
static const unsigned int kVersion = Search::kVersion;
/* Get the size of memory that will be mapped given ngram counts. This
* does not include small non-mapped control structures, such as this class
* itself.
*/
static size_t Size(const std::vector<uint64_t> &counts, const Config &config = Config());
/* Load the model from a file. It may be an ARPA or binary file. Binary
* files must have the format expected by this class or you'll get an
* exception. So TrieModel can only load ARPA or binary created by
* TrieModel. To classify binary files, call RecognizeBinary in
* lm/binary_format.hh.
*/
explicit GenericModel(const char *file, const Config &config = Config());
/* Score p(new_word | in_state) and incorporate new_word into out_state.
* Note that in_state and out_state must be different references:
* &in_state != &out_state.
*/
FullScoreReturn FullScore(const State &in_state, const WordIndex new_word, State &out_state) const;
/* Slower call without in_state. Try to remember state, but sometimes it
* would cost too much memory or your decoder isn't setup properly.
* To use this function, make an array of WordIndex containing the context
* vocabulary ids in reverse order. Then, pass the bounds of the array:
* [context_rbegin, context_rend). The new_word is not part of the context
* array unless you intend to repeat words.
*/
FullScoreReturn FullScoreForgotState(const WordIndex *context_rbegin, const WordIndex *context_rend, const WordIndex new_word, State &out_state) const;
/* Get the state for a context. Don't use this if you can avoid it. Use
* BeginSentenceState or EmptyContextState and extend from those. If
* you're only going to use this state to call FullScore once, use
* FullScoreForgotState.
* To use this function, make an array of WordIndex containing the context
* vocabulary ids in reverse order. Then, pass the bounds of the array:
* [context_rbegin, context_rend).
*/
void GetState(const WordIndex *context_rbegin, const WordIndex *context_rend, State &out_state) const;
/* More efficient version of FullScore where a partial n-gram has already
* been scored.
* NOTE: THE RETURNED .prob IS RELATIVE, NOT ABSOLUTE. So for example, if
* the n-gram does not end up extending further left, then 0 is returned.
*/
FullScoreReturn ExtendLeft(
// Additional context in reverse order. This will update add_rend to
const WordIndex *add_rbegin, const WordIndex *add_rend,
// Backoff weights to use.
const float *backoff_in,
// extend_left returned by a previous query.
uint64_t extend_pointer,
// Length of n-gram that the pointer corresponds to.
unsigned char extend_length,
// Where to write additional backoffs for [extend_length + 1, min(Order() - 1, return.ngram_length)]
float *backoff_out,
// Amount of additional content that should be considered by the next call.
unsigned char &next_use) const;
private:
friend void lm::ngram::LoadLM<>(const char *file, const Config &config, GenericModel<Search, VocabularyT> &to);
static void UpdateConfigFromBinary(int fd, const std::vector<uint64_t> &counts, Config &config);
FullScoreReturn ScoreExceptBackoff(const WordIndex *context_rbegin, const WordIndex *context_rend, const WordIndex new_word, State &out_state) const;
// Appears after Size in the cc file.
void SetupMemory(void *start, const std::vector<uint64_t> &counts, const Config &config);
void InitializeFromBinary(void *start, const Parameters &params, const Config &config, int fd);
void InitializeFromARPA(const char *file, const Config &config);
Backing &MutableBacking() { return backing_; }
Backing backing_;
VocabularyT vocab_;
typedef typename Search::Middle Middle;
Search search_;
};
} // namespace detail
// These must also be instantiated in the cc file.
typedef ::lm::ngram::ProbingVocabulary Vocabulary;
typedef detail::GenericModel<detail::ProbingHashedSearch, Vocabulary> ProbingModel; // HASH_PROBING
// Default implementation. No real reason for it to be the default.
typedef ProbingModel Model;
// Smaller implementation.
typedef ::lm::ngram::SortedVocabulary SortedVocabulary;
typedef detail::GenericModel<trie::TrieSearch<DontQuantize, trie::DontBhiksha>, SortedVocabulary> TrieModel; // TRIE_SORTED
typedef detail::GenericModel<trie::TrieSearch<DontQuantize, trie::ArrayBhiksha>, SortedVocabulary> ArrayTrieModel;
typedef detail::GenericModel<trie::TrieSearch<SeparatelyQuantize, trie::DontBhiksha>, SortedVocabulary> QuantTrieModel; // QUANT_TRIE_SORTED
typedef detail::GenericModel<trie::TrieSearch<SeparatelyQuantize, trie::ArrayBhiksha>, SortedVocabulary> QuantArrayTrieModel;
} // namespace ngram
} // namespace lm
#endif // LM_MODEL__