mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-29 06:52:34 +03:00
148c1e8305
git-svn-id: https://mosesdecoder.svn.sourceforge.net/svnroot/mosesdecoder/trunk@3899 1f5c12ca-751b-0410-a591-d2e778427230
101 lines
2.9 KiB
C++
101 lines
2.9 KiB
C++
#include "Scorer.h"
|
|
|
|
//regularisation strategies
|
|
static float score_min(const statscores_t& scores, size_t start, size_t end)
|
|
{
|
|
float min = numeric_limits<float>::max();
|
|
for (size_t i = start; i < end; ++i) {
|
|
if (scores[i] < min) {
|
|
min = scores[i];
|
|
}
|
|
}
|
|
return min;
|
|
}
|
|
|
|
static float score_average(const statscores_t& scores, size_t start, size_t end)
|
|
{
|
|
if ((end - start) < 1) {
|
|
//shouldn't happen
|
|
return 0;
|
|
}
|
|
float total = 0;
|
|
for (size_t j = start; j < end; ++j) {
|
|
total += scores[j];
|
|
}
|
|
|
|
return total / (end - start);
|
|
}
|
|
|
|
void StatisticsBasedScorer::score(const candidates_t& candidates, const diffs_t& diffs,
|
|
statscores_t& scores)
|
|
{
|
|
if (!_scoreData) {
|
|
throw runtime_error("Score data not loaded");
|
|
}
|
|
//calculate the score for the candidates
|
|
if (_scoreData->size() == 0) {
|
|
throw runtime_error("Score data is empty");
|
|
}
|
|
if (candidates.size() == 0) {
|
|
throw runtime_error("No candidates supplied");
|
|
}
|
|
int numCounts = _scoreData->get(0,candidates[0]).size();
|
|
vector<int> totals(numCounts);
|
|
for (size_t i = 0; i < candidates.size(); ++i) {
|
|
ScoreStats stats = _scoreData->get(i,candidates[i]);
|
|
if (stats.size() != totals.size()) {
|
|
stringstream msg;
|
|
msg << "Statistics for (" << "," << candidates[i] << ") have incorrect "
|
|
<< "number of fields. Found: " << stats.size() << " Expected: "
|
|
<< totals.size();
|
|
throw runtime_error(msg.str());
|
|
}
|
|
for (size_t k = 0; k < totals.size(); ++k) {
|
|
totals[k] += stats.get(k);
|
|
}
|
|
}
|
|
scores.push_back(calculateScore(totals));
|
|
|
|
candidates_t last_candidates(candidates);
|
|
//apply each of the diffs, and get new scores
|
|
for (size_t i = 0; i < diffs.size(); ++i) {
|
|
for (size_t j = 0; j < diffs[i].size(); ++j) {
|
|
size_t sid = diffs[i][j].first;
|
|
size_t nid = diffs[i][j].second;
|
|
size_t last_nid = last_candidates[sid];
|
|
for (size_t k = 0; k < totals.size(); ++k) {
|
|
int diff = _scoreData->get(sid,nid).get(k)
|
|
- _scoreData->get(sid,last_nid).get(k);
|
|
totals[k] += diff;
|
|
}
|
|
last_candidates[sid] = nid;
|
|
}
|
|
scores.push_back(calculateScore(totals));
|
|
}
|
|
|
|
//regularisation. This can either be none, or the min or average as described in
|
|
//Cer, Jurafsky and Manning at WMT08
|
|
if (_regularisationStrategy == REG_NONE || _regularisationWindow <= 0) {
|
|
//no regularisation
|
|
return;
|
|
}
|
|
|
|
//window size specifies the +/- in each direction
|
|
statscores_t raw_scores(scores);//copy scores
|
|
for (size_t i = 0; i < scores.size(); ++i) {
|
|
size_t start = 0;
|
|
if (i >= _regularisationWindow) {
|
|
start = i - _regularisationWindow;
|
|
}
|
|
size_t end = min(scores.size(), i + _regularisationWindow+1);
|
|
if (_regularisationStrategy == REG_AVERAGE) {
|
|
scores[i] = score_average(raw_scores,start,end);
|
|
} else {
|
|
scores[i] = score_min(raw_scores,start,end);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|