mosesdecoder/mert/mert.cpp
2008-05-17 12:19:02 +00:00

160 lines
3.9 KiB
C++
Executable File

/**
\description The is the main for the new version of the mert algorithm develloppped during the 2nd MT marathon
*/
#include <limits>
#include "Data.h"
#include "Point.h"
#include "Scorer.h"
#include "ScoreData.h"
#include "FeatureData.h"
#include "Optimizer.h"
#include "getopt.h"
#include "Types.h"
#include <unistd.h>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <cmath>
#include "Timer.h"
#include "Util.h"
float min_interval = 1e-3;
using namespace std;
void usage(void) {
cerr<<"usage: mert -d <dimensions> (mandatory )"<<endl;
cerr<<"[-n retry ntimes (default 1)]"<<endl;
cerr<<"[-o\tthe indexes to optimize(default all)]"<<endl;
cerr<<"[-t\tthe optimizer(default powell)]"<<endl;
cerr<<"[--sctype|-s] the scorer type (default BLEU)"<<endl;
cerr<<"[--scfile|-S] the scorer data file (default score.data)"<<endl;
cerr<<"[--ffile|-F] the feature data file data file (default feature.data)"<<endl;
cerr<<"[-v] verbose level"<<endl;
exit(1);
}
static struct option long_options[] =
{
{"pdim", 1, 0, 'd'},
{"ntry",1,0,'n'},
{"optimize",1,0,'o'},
{"type",1,0,'t'},
{"sctype",1,0,'s'},
{"scfile",1,0,'S'},
{"ffile",1,0,'F'},
{"verbose",1,0,'v'},
{0, 0, 0, 0}
};
int option_index;
int main (int argc, char **argv) {
int c,pdim,i;
pdim=-1;
int ntry=1;
string type("powell");
string scorertype("BLEU");
string scorerfile("statscore.data");
string featurefile("features.data");
vector<unsigned> tooptimize;
vector<parameter_t> start;
while ((c=getopt_long (argc, argv, "d:n:t:s:S:F:v:", long_options, &option_index)) != -1) {
switch (c) {
case 'd':
pdim = strtol(optarg, NULL, 10);
break;
case 'n':
ntry=strtol(optarg, NULL, 10);
break;
case 't':
type=string(optarg);
break;
case's':
scorertype=string(optarg);
break;
case 'S':
scorerfile=string(optarg);
case 'F':
featurefile=string(optarg);
break;
case 'v':
setverboselevel(strtol(optarg,NULL,10));
break;
default:
usage();
}
}
if (pdim < 0)
usage();
Timer timer;
timer.start("Starting...");
if(tooptimize.empty()){
tooptimize.resize(pdim);//We'll optimize on everything
for(i=0;i<pdim;i++)
tooptimize[i]=i;
}
ifstream opt("init.opt");
if(opt.fail()){
cerr<<"could not open init.opt"<<endl;
exit(3);
}
start.resize(pdim);//to do:read from file
int j;
for( j=0;j<pdim&&!opt.fail();j++)
opt>>start[j];
if(j<pdim){
cerr<<"error could not initialize start point with init.opt"<<endl;
exit(3);
}
opt.close();
//it make sense to know what parameter set were used to generate the nbest
ScorerFactory SF;
Scorer *TheScorer=SF.getScorer(scorertype);
ScoreData *SD=new ScoreData(*TheScorer);
SD->load(scorerfile);
FeatureData *FD=new FeatureData();
FD->load(featurefile);
Optimizer *O=OptimizerFactory::BuildOptimizer(pdim,tooptimize,start,type);
O->SetScorer(TheScorer);
O->SetFData(FD);
Point P(start);//Generate from the full feature set. Warning: must ne done after Optimiezr initialiazation
statscore_t best=O->Run(P);
Point bestP=P;
statscore_t mean=best;
statscore_t var=best*best;
vector<parameter_t> min(Point::getdim());
vector<parameter_t> max(Point::getdim());
for(int d=0;d<Point::getdim();d++){
min[d]=0.0;
max[d]=1.0;
}
//note: those mins and max are the bound for the starting points of the algorithm, not strict bound on the result!
for(int i=1;i<ntry;i++){
P.Randomize(min,max);
statscore_t score=O->Run(P);
if(score>best){
best=score;
bestP=P;
}
mean+=score;
var+=(score*score);
}
mean/=(float)ntry;
var/=(float)ntry;
var=sqrt(abs(var-mean*mean));
if(ntry>1)
cerr<<"variance of the score (for "<<ntry<<" try):"<<var<<endl;
cerr<<"best score"<<best<<endl;
ofstream res("weights.txt");
res<<bestP<<endl;
timer.stop("Stopping...");
}