mosesdecoder/mira/Optimiser.h

197 lines
7.3 KiB
C++

/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2010 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#ifndef _MIRA_OPTIMISER_H_
#define _MIRA_OPTIMISER_H_
#include <vector>
#include "ScoreComponentCollection.h"
namespace Mira {
class Optimiser {
public:
Optimiser() {}
virtual std::vector<int> updateWeightsAnalytically(Moses::ScoreComponentCollection& weights,
const Moses::ScoreComponentCollection& featureValues,
float loss,
const Moses::ScoreComponentCollection& oracleFeatureValues,
float oracleBleuScore,
size_t sentenceId,
float learning_rate,
float max_sentence_update,
size_t rank,
size_t epoch,
bool controlUpdates) = 0;
virtual std::vector<int> updateWeights(Moses::ScoreComponentCollection& weights,
const std::vector< std::vector<Moses::ScoreComponentCollection> >& featureValues,
const std::vector< std::vector<float> >& losses,
const std::vector<std::vector<float> >& bleuScores,
const std::vector< Moses::ScoreComponentCollection>& oracleFeatureValues,
const std::vector< float> oracleBleuScores,
const std::vector< size_t> sentenceId,
float learning_rate,
float max_sentence_update,
size_t rank,
size_t epoch,
int updates_per_epoch,
bool controlUpdates) = 0;
};
class Perceptron : public Optimiser {
public:
virtual std::vector<int> updateWeightsAnalytically(Moses::ScoreComponentCollection& weights,
const Moses::ScoreComponentCollection& featureValues,
float loss,
const Moses::ScoreComponentCollection& oracleFeatureValues,
float oracleBleuScore,
size_t sentenceId,
float learning_rate,
float max_sentence_update,
size_t rank,
size_t epoch,
bool controlUpdates);
virtual std::vector<int> updateWeights(Moses::ScoreComponentCollection& weights,
const std::vector< std::vector<Moses::ScoreComponentCollection> >& featureValues,
const std::vector< std::vector<float> >& losses,
const std::vector<std::vector<float> >& bleuScores,
const std::vector<Moses::ScoreComponentCollection>& oracleFeatureValues,
const std::vector< float> oracleBleuScores,
const std::vector< size_t> dummy,
float learning_rate,
float max_sentence_update,
size_t rank,
size_t epoch,
int updates_per_epoch,
bool controlUpdates);
};
class MiraOptimiser : public Optimiser {
public:
MiraOptimiser() :
Optimiser() { }
MiraOptimiser(size_t n, bool hildreth, float marginScaleFactor, bool onlyViolatedConstraints, float slack, size_t weightedLossFunction, size_t maxNumberOracles, bool accumulateMostViolatedConstraints, bool pastAndCurrentConstraints, size_t exampleSize, float precision) :
Optimiser(),
m_n(n),
m_hildreth(hildreth),
m_marginScaleFactor(marginScaleFactor),
m_onlyViolatedConstraints(onlyViolatedConstraints),
m_slack(slack),
m_weightedLossFunction(weightedLossFunction),
m_max_number_oracles(maxNumberOracles),
m_accumulateMostViolatedConstraints(accumulateMostViolatedConstraints),
m_pastAndCurrentConstraints(pastAndCurrentConstraints),
m_oracles(exampleSize),
m_bleu_of_oracles(exampleSize),
m_precision(precision) { }
~MiraOptimiser() {}
virtual std::vector<int> updateWeightsAnalytically(Moses::ScoreComponentCollection& weights,
const Moses::ScoreComponentCollection& featureValues,
float loss,
const Moses::ScoreComponentCollection& oracleFeatureValues,
float oracleBleuScores,
size_t sentenceId,
float learning_rate,
float max_sentence_update,
size_t rank,
size_t epoch,
bool controlUpdates);
virtual std::vector<int> updateWeights(Moses::ScoreComponentCollection& weights,
const std::vector< std::vector<Moses::ScoreComponentCollection> >& featureValues,
const std::vector< std::vector<float> >& losses,
const std::vector<std::vector<float> >& bleuScores,
const std::vector< Moses::ScoreComponentCollection>& oracleFeatureValues,
const std::vector< float> oracleBleuScores,
const std::vector< size_t> sentenceId,
float learning_rate,
float max_sentence_update,
size_t rank,
size_t epoch,
int updates_per_epoch,
bool controlUpdates);
void setOracleIndices(std::vector<size_t> oracleIndices) {
m_oracleIndices= oracleIndices;
}
void setSlack(float slack) {
m_slack = slack;
}
void setMarginScaleFactor(float msf) {
m_marginScaleFactor = msf;
}
Moses::ScoreComponentCollection getAccumulatedUpdates() {
return m_accumulatedUpdates;
}
void resetAccumulatedUpdates() {
m_accumulatedUpdates.ZeroAll();
}
private:
// number of hypotheses used for each nbest list (number of hope, fear, best model translations)
size_t m_n;
// whether or not to use the Hildreth algorithm in the optimisation step
bool m_hildreth;
// scaling the margin to regularise updates
float m_marginScaleFactor;
// add only violated constraints to the optimisation problem
bool m_onlyViolatedConstraints;
// regularise Hildreth updates
float m_slack;
size_t m_weightedLossFunction;
// index of oracle translation in hypothesis matrix
std::vector<size_t> m_oracleIndices;
// keep a list of oracle translations over epochs
std::vector < std::vector< Moses::ScoreComponentCollection> > m_oracles;
std::vector < std::vector< float> > m_bleu_of_oracles;
size_t m_max_number_oracles;
// accumulate most violated constraints for every example
std::vector< Moses::ScoreComponentCollection> m_featureValueDiffs;
std::vector< float> m_losses;
bool m_accumulateMostViolatedConstraints;
bool m_pastAndCurrentConstraints;
Moses::ScoreComponentCollection m_accumulatedUpdates;
float m_precision;
};
}
#endif