mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-06 03:33:37 +03:00
89 lines
2.9 KiB
Python
Executable File
89 lines
2.9 KiB
Python
Executable File
# -*- coding: utf-8 -*-
|
|
|
|
#
|
|
# Sample python client. Additionally to basic functionality, shows how translation model weights can be provided to multimodel phrase table type,
|
|
# and how translation model weights can be optimized on tuning set of phrase pairs.
|
|
# translate_concurrent() shows how to use multiple moses server threads.
|
|
#
|
|
|
|
import sys
|
|
import gzip
|
|
from multiprocessing import Pool
|
|
|
|
if sys.version_info < (3, 0):
|
|
import xmlrpclib
|
|
else:
|
|
import xmlrpc.client as xmlrpclib
|
|
|
|
|
|
def translate(input_object, server, weights=None, model_name=None):
|
|
"""translate each sentence in an input_object (list, file-like object or other object that iterates over sentences)
|
|
server is a xmlrpclib.ServerProxy
|
|
model_name is the name of the PhraseDictionaryMultiModel(Counts) feature function that the weights should be applied to. It is defined in the moses.ini
|
|
weights is a list of floats (one float per model, or one float per model per feature)
|
|
"""
|
|
|
|
for line in input_object:
|
|
params = {}
|
|
params['text'] = line
|
|
if weights:
|
|
if not model_name:
|
|
sys.stderr.write("Error: if you define weights, you need to specify the feature to which the weights are to be applied (e.g. PhraseDictionaryMultiModel0)\n")
|
|
sys.exit(1)
|
|
params['model_name'] = model_name
|
|
params['lambda'] = weights
|
|
|
|
print server.translate(params)
|
|
|
|
|
|
def optimize(phrase_pairs, server, model_name):
|
|
|
|
params = {}
|
|
params['phrase_pairs'] = phrase_pairs
|
|
params['model_name'] = model_name
|
|
weights = server.optimize(params)
|
|
sys.stderr.write('weight vector (set lambda in moses.ini to this value to set as default): ')
|
|
sys.stderr.write(','.join(map(str,weights)) + '\n')
|
|
return weights
|
|
|
|
|
|
def read_phrase_pairs(input_object):
|
|
|
|
pairs = []
|
|
for line in input_object:
|
|
line = line.split(' ||| ')
|
|
pairs.append((line[0],line[1]))
|
|
return pairs
|
|
|
|
|
|
#same functionality as translate(), but using multiple concurrent connections to server
|
|
def translate_concurrent(input_object, url, weights=None, num_processes=8):
|
|
|
|
pool = Pool(processes=num_processes)
|
|
text_args = [(line, weights, url) for line in input_object]
|
|
|
|
for translated_line in pool.imap(translate_single_line, text_args):
|
|
print translated_line
|
|
|
|
|
|
def translate_single_line(args):
|
|
|
|
line, weights, url = args
|
|
server = xmlrpclib.ServerProxy(url)
|
|
|
|
params = {}
|
|
params['text'] = line
|
|
if weights:
|
|
params['lambda'] = weights
|
|
|
|
return server.translate(params)['text']
|
|
|
|
|
|
if __name__ == '__main__':
|
|
url = "http://localhost:8111/RPC2"
|
|
server = xmlrpclib.ServerProxy(url)
|
|
|
|
phrase_pairs = read_phrase_pairs(gzip.open('/path/to/moses-regression-tests/models/multimodel/extract.sorted.gz'))
|
|
weights = optimize(phrase_pairs, server, 'PhraseDictionaryMultiModelCounts0')
|
|
|
|
translate(sys.stdin, server, weights, 'PhraseDictionaryMultiModelCounts0') |