mosesdecoder/moses/ChartManager.cpp
2014-05-13 10:24:30 +01:00

279 lines
8.9 KiB
C++

// $Id$
// vim:tabstop=2
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2010 Hieu Hoang
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <stdio.h>
#include "ChartManager.h"
#include "ChartCell.h"
#include "ChartHypothesis.h"
#include "ChartKBestExtractor.h"
#include "ChartTranslationOptions.h"
#include "StaticData.h"
#include "DecodeStep.h"
#include "TreeInput.h"
#include "moses/FF/WordPenaltyProducer.h"
using namespace std;
using namespace Moses;
namespace Moses
{
extern bool g_mosesDebug;
/* constructor. Initialize everything prior to decoding a particular sentence.
* \param source the sentence to be decoded
* \param system which particular set of models to use.
*/
ChartManager::ChartManager(InputType const& source)
:m_source(source)
,m_hypoStackColl(source, *this)
,m_start(clock())
,m_hypothesisId(0)
,m_parser(source, m_hypoStackColl)
,m_translationOptionList(StaticData::Instance().GetRuleLimit(), source)
{
}
ChartManager::~ChartManager()
{
clock_t end = clock();
float et = (end - m_start);
et /= (float)CLOCKS_PER_SEC;
VERBOSE(1, "Translation took " << et << " seconds" << endl);
}
//! decode the sentence. This contains the main laps. Basically, the CKY++ algorithm
void ChartManager::ProcessSentence()
{
VERBOSE(1,"Translating: " << m_source << endl);
ResetSentenceStats(m_source);
VERBOSE(2,"Decoding: " << endl);
//ChartHypothesis::ResetHypoCount();
AddXmlChartOptions();
// MAIN LOOP
size_t size = m_source.GetSize();
for (int startPos = size-1; startPos >= 0; --startPos) {
for (size_t width = 1; width <= size-startPos; ++width) {
size_t endPos = startPos + width - 1;
WordsRange range(startPos, endPos);
// create trans opt
m_translationOptionList.Clear();
m_parser.Create(range, m_translationOptionList);
m_translationOptionList.ApplyThreshold();
const InputPath &inputPath = m_parser.GetInputPath(range);
m_translationOptionList.Evaluate(m_source, inputPath);
// decode
ChartCell &cell = m_hypoStackColl.Get(range);
cell.ProcessSentence(m_translationOptionList, m_hypoStackColl);
m_translationOptionList.Clear();
cell.PruneToSize();
cell.CleanupArcList();
cell.SortHypotheses();
}
}
IFVERBOSE(1) {
for (size_t startPos = 0; startPos < size; ++startPos) {
cerr.width(3);
cerr << startPos << " ";
}
cerr << endl;
for (size_t width = 1; width <= size; width++) {
for( size_t space = 0; space < width-1; space++ ) {
cerr << " ";
}
for (size_t startPos = 0; startPos <= size-width; ++startPos) {
WordsRange range(startPos, startPos+width-1);
cerr.width(3);
cerr << m_hypoStackColl.Get(range).GetSize() << " ";
}
cerr << endl;
}
}
}
/** add specific translation options and hypotheses according to the XML override translation scheme.
* Doesn't seem to do anything about walls and zones.
* @todo check walls & zones. Check that the implementation doesn't leak, xml options sometimes does if you're not careful
*/
void ChartManager::AddXmlChartOptions()
{
const StaticData &staticData = StaticData::Instance();
const std::vector <ChartTranslationOptions*> xmlChartOptionsList = m_source.GetXmlChartTranslationOptions();
IFVERBOSE(2) {
cerr << "AddXmlChartOptions " << xmlChartOptionsList.size() << endl;
}
if (xmlChartOptionsList.size() == 0) return;
for(std::vector<ChartTranslationOptions*>::const_iterator i = xmlChartOptionsList.begin();
i != xmlChartOptionsList.end(); ++i) {
ChartTranslationOptions* opt = *i;
const WordsRange &range = opt->GetSourceWordsRange();
RuleCubeItem* item = new RuleCubeItem( *opt, m_hypoStackColl );
ChartHypothesis* hypo = new ChartHypothesis(*opt, *item, *this);
hypo->Evaluate();
ChartCell &cell = m_hypoStackColl.Get(range);
cell.AddHypothesis(hypo);
}
}
//! get best complete translation from the top chart cell.
const ChartHypothesis *ChartManager::GetBestHypothesis() const
{
size_t size = m_source.GetSize();
if (size == 0) // empty source
return NULL;
else {
WordsRange range(0, size-1);
const ChartCell &lastCell = m_hypoStackColl.Get(range);
return lastCell.GetBestHypothesis();
}
}
/** Calculate the n-best paths through the output hypergraph.
* Return the list of paths with the variable ret
* \param n how may paths to return
* \param ret return argument
* \param onlyDistinct whether to check for distinct output sentence or not (default - don't check, just return top n-paths)
*/
void ChartManager::CalcNBest(
std::size_t n,
std::vector<boost::shared_ptr<ChartKBestExtractor::Derivation> > &nBestList,
bool onlyDistinct) const
{
nBestList.clear();
if (n == 0 || m_source.GetSize() == 0) {
return;
}
// Get the list of top-level hypotheses, sorted by score.
WordsRange range(0, m_source.GetSize()-1);
const ChartCell &lastCell = m_hypoStackColl.Get(range);
boost::scoped_ptr<const std::vector<const ChartHypothesis*> > topLevelHypos(
lastCell.GetAllSortedHypotheses());
if (!topLevelHypos) {
return;
}
ChartKBestExtractor extractor;
if (!onlyDistinct) {
// Return the n-best list as is, including duplicate translations.
extractor.Extract(*topLevelHypos, n, nBestList);
return;
}
// Determine how many derivations to extract. If the n-best list is
// restricted to distinct translations then this limit should be bigger
// than n. The n-best factor determines how much bigger the limit should be,
// with 0 being 'unlimited.' This actually sets a large-ish limit in case
// too many translations are identical.
const StaticData &staticData = StaticData::Instance();
const std::size_t nBestFactor = staticData.GetNBestFactor();
std::size_t numDerivations = (nBestFactor == 0) ? n*1000 : n*nBestFactor;
// Extract the derivations.
ChartKBestExtractor::KBestVec bigList;
bigList.reserve(numDerivations);
extractor.Extract(*topLevelHypos, numDerivations, bigList);
// Copy derivations into nBestList, skipping ones with repeated translations.
std::set<Phrase> distinct;
for (ChartKBestExtractor::KBestVec::const_iterator p = bigList.begin();
nBestList.size() < n && p != bigList.end(); ++p) {
boost::shared_ptr<ChartKBestExtractor::Derivation> derivation = *p;
Phrase translation = ChartKBestExtractor::GetOutputPhrase(*derivation);
if (distinct.insert(translation).second) {
nBestList.push_back(derivation);
}
}
}
void ChartManager::GetSearchGraph(long translationId, std::ostream &outputSearchGraphStream) const
{
size_t size = m_source.GetSize();
// which hypotheses are reachable?
std::map<unsigned,bool> reachable;
WordsRange fullRange(0, size-1);
const ChartCell &lastCell = m_hypoStackColl.Get(fullRange);
const ChartHypothesis *hypo = lastCell.GetBestHypothesis();
if (hypo == NULL) {
// no hypothesis
return;
}
FindReachableHypotheses( hypo, reachable);
for (size_t width = 1; width <= size; ++width) {
for (size_t startPos = 0; startPos <= size-width; ++startPos) {
size_t endPos = startPos + width - 1;
WordsRange range(startPos, endPos);
TRACE_ERR(" " << range << "=");
const ChartCell &cell = m_hypoStackColl.Get(range);
cell.GetSearchGraph(translationId, outputSearchGraphStream, reachable);
}
}
}
void ChartManager::FindReachableHypotheses( const ChartHypothesis *hypo, std::map<unsigned,bool> &reachable ) const
{
// do not recurse, if already visited
if (reachable.find(hypo->GetId()) != reachable.end()) {
return;
}
// recurse
reachable[ hypo->GetId() ] = true;
const std::vector<const ChartHypothesis*> &previous = hypo->GetPrevHypos();
for(std::vector<const ChartHypothesis*>::const_iterator i = previous.begin(); i != previous.end(); ++i) {
FindReachableHypotheses( *i, reachable );
}
// also loop over recombined hypotheses (arcs)
const ChartArcList *arcList = hypo->GetArcList();
if (arcList) {
ChartArcList::const_iterator iterArc;
for (iterArc = arcList->begin(); iterArc != arcList->end(); ++iterArc) {
const ChartHypothesis &arc = **iterArc;
FindReachableHypotheses( &arc, reachable );
}
}
}
} // namespace Moses