mosesdecoder/moses/Phrase.cpp
2015-12-11 01:09:22 +00:00

466 lines
12 KiB
C++

// -*- mode: c++; indent-tabs-mode: nil; tab-width:2 -*-
// vim:tabstop=2
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <algorithm>
#include <sstream>
#include <string>
#include "memory.h"
#include "FactorCollection.h"
#include "Phrase.h"
#include "StaticData.h" // GetMaxNumFactors
#include "util/string_piece.hh"
#include "util/string_stream.hh"
#include "util/tokenize_piece.hh"
using namespace std;
namespace Moses
{
Phrase::Phrase() {}
Phrase::Phrase(size_t reserveSize)
{
m_words.reserve(reserveSize);
}
Phrase::Phrase(const vector< const Word* > &mergeWords)
{
m_words.reserve(mergeWords.size());
for (size_t currPos = 0 ; currPos < mergeWords.size() ; currPos++) {
AddWord(*mergeWords[currPos]);
}
}
Phrase::~Phrase()
{
}
void Phrase::MergeFactors(const Phrase &copy)
{
UTIL_THROW_IF2(GetSize() != copy.GetSize(), "Both phrases need to be the same size to merge");
size_t size = GetSize();
const size_t maxNumFactors = MAX_NUM_FACTORS;
for (size_t currPos = 0 ; currPos < size ; currPos++) {
for (unsigned int currFactor = 0 ; currFactor < maxNumFactors ; currFactor++) {
FactorType factorType = static_cast<FactorType>(currFactor);
const Factor *factor = copy.GetFactor(currPos, factorType);
if (factor != NULL)
SetFactor(currPos, factorType, factor);
}
}
}
void Phrase::MergeFactors(const Phrase &copy, FactorType factorType)
{
UTIL_THROW_IF2(GetSize() != copy.GetSize(), "Both phrases need to be the same size to merge");
for (size_t currPos = 0 ; currPos < GetSize() ; currPos++)
SetFactor(currPos, factorType, copy.GetFactor(currPos, factorType));
}
void Phrase::MergeFactors(const Phrase &copy, const std::vector<FactorType>& factorVec)
{
UTIL_THROW_IF2(GetSize() != copy.GetSize(), "Both phrases need to be the same size to merge");
for (size_t currPos = 0 ; currPos < GetSize() ; currPos++)
for (std::vector<FactorType>::const_iterator i = factorVec.begin();
i != factorVec.end(); ++i) {
SetFactor(currPos, *i, copy.GetFactor(currPos, *i));
}
}
Phrase Phrase::GetSubString(const Range &range) const
{
Phrase retPhrase(range.GetNumWordsCovered());
for (size_t currPos = range.GetStartPos() ; currPos <= range.GetEndPos() ; currPos++) {
Word &word = retPhrase.AddWord();
word = GetWord(currPos);
}
return retPhrase;
}
Phrase Phrase::GetSubString(const Range &range, FactorType factorType) const
{
Phrase retPhrase(range.GetNumWordsCovered());
for (size_t currPos = range.GetStartPos() ; currPos <= range.GetEndPos() ; currPos++) {
const Factor* f = GetFactor(currPos, factorType);
Word &word = retPhrase.AddWord();
word.SetFactor(factorType, f);
}
return retPhrase;
}
std::string
Phrase::
GetStringRep(vector<FactorType> const& factorsToPrint,
AllOptions const* opts) const
{
if (!opts) opts = StaticData::Instance().options().get();
bool markUnk = opts->unk.mark;
util::StringStream strme;
for (size_t pos = 0 ; pos < GetSize() ; pos++) {
if (markUnk && GetWord(pos).IsOOV()) {
strme << opts->unk.prefix;
}
strme << GetWord(pos).GetString(factorsToPrint, (pos != GetSize()-1));
if (markUnk && GetWord(pos).IsOOV()) {
strme << opts->unk.suffix;
}
}
return strme.str();
}
Word &Phrase::AddWord()
{
m_words.push_back(Word());
return m_words.back();
}
void Phrase::Append(const Phrase &endPhrase)
{
for (size_t i = 0; i < endPhrase.GetSize(); i++) {
AddWord(endPhrase.GetWord(i));
}
}
void Phrase::PrependWord(const Word &newWord)
{
AddWord();
// shift
for (size_t pos = GetSize() - 1; pos >= 1; --pos) {
const Word &word = m_words[pos - 1];
m_words[pos] = word;
}
m_words[0] = newWord;
}
void Phrase::CreateFromString(FactorDirection direction,
const std::vector<FactorType> &factorOrder,
const StringPiece &phraseString,
Word **lhs)
{
// parse
vector<StringPiece> annotatedWordVector;
for (util::TokenIter<util::AnyCharacter, true> it(phraseString, "\t "); it; ++it) {
annotatedWordVector.push_back(*it);
}
if (annotatedWordVector.size() == 0) {
if (lhs) {
(*lhs) = NULL;
}
return;
}
// KOMMA|none ART|Def.Z NN|Neut.NotGen.Sg VVFIN|none
// to
// "KOMMA|none" "ART|Def.Z" "NN|Neut.NotGen.Sg" "VVFIN|none"
size_t numWords;
const StringPiece &annotatedWord = annotatedWordVector.back();
if (annotatedWord.size() >= 2
&& *annotatedWord.data() == '['
&& annotatedWord.data()[annotatedWord.size() - 1] == ']') {
// hiero/syntax rule
numWords = annotatedWordVector.size()-1;
// lhs
assert(lhs);
(*lhs) = new Word(true);
(*lhs)->CreateFromString(direction, factorOrder, annotatedWord.substr(1, annotatedWord.size() - 2), true);
assert((*lhs)->IsNonTerminal());
} else {
numWords = annotatedWordVector.size();
if (lhs) {
(*lhs) = NULL;
}
}
// parse each word
m_words.reserve(numWords);
for (size_t phrasePos = 0 ; phrasePos < numWords; phrasePos++) {
StringPiece &annotatedWord = annotatedWordVector[phrasePos];
bool isNonTerminal;
if (annotatedWord.size() >= 2 && *annotatedWord.data() == '[' && annotatedWord.data()[annotatedWord.size() - 1] == ']') {
// non-term
isNonTerminal = true;
size_t nextPos = annotatedWord.find('[', 1);
UTIL_THROW_IF2(nextPos == string::npos,
"Incorrect formatting of non-terminal. Should have 2 non-terms, eg. [X][X]. "
<< "Current string: " << annotatedWord);
if (direction == Input)
annotatedWord = annotatedWord.substr(1, nextPos - 2);
else
annotatedWord = annotatedWord.substr(nextPos + 1, annotatedWord.size() - nextPos - 2);
} else {
isNonTerminal = false;
}
Word &word = AddWord();
word.CreateFromString(direction, factorOrder, annotatedWord, isNonTerminal);
}
}
int Phrase::Compare(const Phrase &other) const
{
#ifdef min
#undef min
#endif
size_t thisSize = GetSize()
,compareSize = other.GetSize();
if (thisSize != compareSize) {
return (thisSize < compareSize) ? -1 : 1;
}
for (size_t pos = 0 ; pos < thisSize ; pos++) {
const Word &thisWord = GetWord(pos)
,&otherWord = other.GetWord(pos);
int ret = Word::Compare(thisWord, otherWord);
if (ret != 0)
return ret;
}
return 0;
}
size_t Phrase::hash() const
{
size_t seed = 0;
for (size_t i = 0; i < GetSize(); ++i) {
boost::hash_combine(seed, GetWord(i));
}
return seed;
}
bool Phrase::operator== (const Phrase &other) const
{
size_t thisSize = GetSize()
,compareSize = other.GetSize();
if (thisSize != compareSize) {
return false;
}
for (size_t pos = 0 ; pos < thisSize ; pos++) {
const Word &thisWord = GetWord(pos)
,&otherWord = other.GetWord(pos);
bool ret = thisWord == otherWord;
if (!ret) {
return false;
}
}
return true;
}
bool Phrase::Contains(const vector< vector<string> > &subPhraseVector
, const vector<FactorType> &inputFactor) const
{
const size_t subSize = subPhraseVector.size()
,thisSize= GetSize();
if (subSize > thisSize)
return false;
// try to match word-for-word
for (size_t currStartPos = 0 ; currStartPos < (thisSize - subSize + 1) ; currStartPos++) {
bool match = true;
for (size_t currFactorIndex = 0 ; currFactorIndex < inputFactor.size() ; currFactorIndex++) {
FactorType factorType = inputFactor[currFactorIndex];
for (size_t currSubPos = 0 ; currSubPos < subSize ; currSubPos++) {
size_t currThisPos = currSubPos + currStartPos;
const string &subStr = subPhraseVector[currSubPos][currFactorIndex];
StringPiece thisStr = GetFactor(currThisPos, factorType)->GetString();
if (subStr != thisStr) {
match = false;
break;
}
}
if (!match)
break;
}
if (match)
return true;
}
return false;
}
bool Phrase::IsCompatible(const Phrase &inputPhrase) const
{
if (inputPhrase.GetSize() != GetSize()) {
return false;
}
const size_t size = GetSize();
const size_t maxNumFactors = MAX_NUM_FACTORS;
for (size_t currPos = 0 ; currPos < size ; currPos++) {
for (unsigned int currFactor = 0 ; currFactor < maxNumFactors ; currFactor++) {
FactorType factorType = static_cast<FactorType>(currFactor);
const Factor *thisFactor = GetFactor(currPos, factorType)
,*inputFactor = inputPhrase.GetFactor(currPos, factorType);
if (thisFactor != NULL && inputFactor != NULL && thisFactor != inputFactor)
return false;
}
}
return true;
}
bool Phrase::IsCompatible(const Phrase &inputPhrase, FactorType factorType) const
{
if (inputPhrase.GetSize() != GetSize()) {
return false;
}
for (size_t currPos = 0 ; currPos < GetSize() ; currPos++) {
if (GetFactor(currPos, factorType) != inputPhrase.GetFactor(currPos, factorType))
return false;
}
return true;
}
bool Phrase::IsCompatible(const Phrase &inputPhrase, const std::vector<FactorType>& factorVec) const
{
if (inputPhrase.GetSize() != GetSize()) {
return false;
}
for (size_t currPos = 0 ; currPos < GetSize() ; currPos++) {
for (std::vector<FactorType>::const_iterator i = factorVec.begin();
i != factorVec.end(); ++i) {
if (GetFactor(currPos, *i) != inputPhrase.GetFactor(currPos, *i))
return false;
}
}
return true;
}
size_t Phrase::GetNumTerminals() const
{
size_t ret = 0;
for (size_t pos = 0; pos < GetSize(); ++pos) {
if (!GetWord(pos).IsNonTerminal())
ret++;
}
return ret;
}
void Phrase::InitializeMemPool()
{
}
void Phrase::FinalizeMemPool()
{
}
void Phrase::OnlyTheseFactors(const FactorMask &factors)
{
for (unsigned int currFactor = 0 ; currFactor < MAX_NUM_FACTORS ; currFactor++) {
if (!factors[currFactor]) {
for (size_t pos = 0; pos < GetSize(); ++pos) {
SetFactor(pos, currFactor, NULL);
}
}
}
}
void Phrase::InitStartEndWord()
{
FactorCollection &factorCollection = FactorCollection::Instance();
Word startWord(Input);
const Factor *factor = factorCollection.AddFactor(Input, 0, BOS_); // TODO - non-factored
startWord.SetFactor(0, factor);
PrependWord(startWord);
Word endWord(Input);
factor = factorCollection.AddFactor(Input, 0, EOS_); // TODO - non-factored
endWord.SetFactor(0, factor);
AddWord(endWord);
}
size_t Phrase::Find(const Phrase &sought, int maxUnknown) const
{
if (GetSize() < sought.GetSize()) {
// sought phrase too big
return NOT_FOUND;
}
size_t maxStartPos = GetSize() - sought.GetSize();
for (size_t startThisPos = 0; startThisPos <= maxStartPos; ++startThisPos) {
size_t thisPos = startThisPos;
int currUnknowns = 0;
size_t soughtPos;
for (soughtPos = 0; soughtPos < sought.GetSize(); ++soughtPos) {
const Word &soughtWord = sought.GetWord(soughtPos);
const Word &thisWord = GetWord(thisPos);
if (soughtWord == thisWord) {
++thisPos;
} else if (soughtWord.IsOOV() && (maxUnknown < 0 || currUnknowns < maxUnknown)) {
// the output has an OOV word. Allow a certain number of OOVs
++currUnknowns;
++thisPos;
} else {
break;
}
}
if (soughtPos == sought.GetSize()) {
return startThisPos;
}
}
return NOT_FOUND;
}
TO_STRING_BODY(Phrase);
// friend
ostream& operator<<(ostream& out, const Phrase& phrase)
{
// out << "(size " << phrase.GetSize() << ") ";
for (size_t pos = 0 ; pos < phrase.GetSize() ; pos++) {
const Word &word = phrase.GetWord(pos);
out << word;
}
return out;
}
}