mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-08 04:27:53 +03:00
4ee8f2dec1
Don't load all references, read them line by line. Corpora with millions of sentences can now be evaluated without consuming gigabytes of RAM.
213 lines
5.6 KiB
C++
213 lines
5.6 KiB
C++
#include "BleuDocScorer.h"
|
|
|
|
#include <sys/types.h>
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <climits>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <stdexcept>
|
|
|
|
#include "util/exception.hh"
|
|
#include "Ngram.h"
|
|
#include "Reference.h"
|
|
#include "Util.h"
|
|
#include "Vocabulary.h"
|
|
|
|
|
|
using namespace std;
|
|
|
|
#if defined __MINGW32__
|
|
#ifndef uint
|
|
#define uint uint16_t
|
|
#endif // uint
|
|
#endif // if
|
|
|
|
namespace
|
|
{
|
|
|
|
// configure regularisation
|
|
const char KEY_REFLEN[] = "reflen";
|
|
const char REFLEN_AVERAGE[] = "average";
|
|
const char REFLEN_SHORTEST[] = "shortest";
|
|
const char REFLEN_CLOSEST[] = "closest";
|
|
|
|
} // namespace
|
|
|
|
namespace MosesTuning
|
|
{
|
|
|
|
|
|
BleuDocScorer::BleuDocScorer(const string& config)
|
|
: BleuScorer("BLEUDOC", config),
|
|
m_ref_length_type(CLOSEST)
|
|
{
|
|
const string reflen = getConfig(KEY_REFLEN, REFLEN_CLOSEST);
|
|
if (reflen == REFLEN_AVERAGE) {
|
|
m_ref_length_type = AVERAGE;
|
|
} else if (reflen == REFLEN_SHORTEST) {
|
|
m_ref_length_type = SHORTEST;
|
|
} else if (reflen == REFLEN_CLOSEST) {
|
|
m_ref_length_type = CLOSEST;
|
|
} else {
|
|
throw runtime_error("Unknown reference length strategy: " + reflen);
|
|
}
|
|
}
|
|
|
|
BleuDocScorer::~BleuDocScorer() {}
|
|
|
|
|
|
bool BleuDocScorer::OpenReferenceStream(istream* is, size_t file_id)
|
|
{
|
|
if (is == NULL) return false;
|
|
|
|
string line;
|
|
size_t doc_id = -1;
|
|
size_t sid = 0;
|
|
while (getline(*is, line)) {
|
|
|
|
if (line.find("<doc docid") != std::string::npos) { // new document
|
|
doc_id++;
|
|
m_references.push_back(new ScopedVector<Reference>());
|
|
sid = 0;
|
|
} else if (line.find("<seg") != std::string::npos) { //new sentence
|
|
int start = line.find_first_of('>') + 1;
|
|
std::string trans = line.substr(start, line.find_last_of('<')-start);
|
|
trans = preprocessSentence(trans);
|
|
|
|
if (file_id == 0) {
|
|
Reference* ref = new Reference;
|
|
m_references[doc_id]->push_back(ref); // Take ownership of the Reference object.
|
|
}
|
|
|
|
if (m_references[doc_id]->size() <= sid) {
|
|
return false;
|
|
}
|
|
NgramCounts counts;
|
|
size_t length = CountNgrams(trans, counts, kBleuNgramOrder);
|
|
|
|
//for any counts larger than those already there, merge them in
|
|
for (NgramCounts::const_iterator ci = counts.begin(); ci != counts.end(); ++ci) {
|
|
const NgramCounts::Key& ngram = ci->first;
|
|
const NgramCounts::Value newcount = ci->second;
|
|
|
|
NgramCounts::Value oldcount = 0;
|
|
m_references[doc_id]->get().at(sid)->get_counts()->Lookup(ngram, &oldcount);
|
|
if (newcount > oldcount) {
|
|
m_references[doc_id]->get().at(sid)->get_counts()->operator[](ngram) = newcount;
|
|
}
|
|
}
|
|
//add in the length
|
|
|
|
m_references[doc_id]->get().at(sid)->push_back(length);
|
|
if (sid > 0 && sid % 100 == 0) {
|
|
TRACE_ERR(".");
|
|
}
|
|
++sid;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void BleuDocScorer::prepareStats(size_t sid, const string& text, ScoreStats& entry)
|
|
{
|
|
if (sid >= m_references.size()) {
|
|
stringstream msg;
|
|
msg << "Sentence id (" << sid << ") not found in reference set";
|
|
throw runtime_error(msg.str());
|
|
}
|
|
|
|
std::vector<std::string> sentences = splitDoc(text);
|
|
|
|
vector<ScoreStatsType> totStats(kBleuNgramOrder * 2 + 1);
|
|
|
|
for (uint i=0; i<sentences.size(); ++i) {
|
|
|
|
NgramCounts testcounts;
|
|
// stats for this line
|
|
vector<ScoreStatsType> stats(kBleuNgramOrder * 2);
|
|
string sentence = preprocessSentence(sentences[i]);
|
|
const size_t length = CountNgrams(sentence, testcounts, kBleuNgramOrder);
|
|
|
|
//precision on each ngram type
|
|
for (NgramCounts::const_iterator testcounts_it = testcounts.begin();
|
|
testcounts_it != testcounts.end(); ++testcounts_it) {
|
|
const NgramCounts::Value guess = testcounts_it->second;
|
|
const size_t len = testcounts_it->first.size();
|
|
NgramCounts::Value correct = 0;
|
|
|
|
NgramCounts::Value v = 0;
|
|
if (m_references[sid]->get().at(i)->get_counts()->Lookup(testcounts_it->first, &v)) {
|
|
correct = min(v, guess);
|
|
}
|
|
stats[len * 2 - 2] += correct;
|
|
stats[len * 2 - 1] += guess;
|
|
}
|
|
|
|
const int reference_len = CalcReferenceLength(sid, i, length);
|
|
stats.push_back(reference_len);
|
|
|
|
//ADD stats to totStats
|
|
std::transform(stats.begin(), stats.end(), totStats.begin(),
|
|
totStats.begin(), std::plus<int>());
|
|
}
|
|
entry.set(totStats);
|
|
}
|
|
|
|
std::vector<std::string> BleuDocScorer::splitDoc(const std::string& text)
|
|
{
|
|
std::vector<std::string> res;
|
|
|
|
uint index = 0;
|
|
std::string::size_type end;
|
|
|
|
while ((end = text.find(" \\n ", index)) != std::string::npos) {
|
|
res.push_back(text.substr(index,end-index));
|
|
index = end + 4;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
statscore_t BleuDocScorer::calculateScore(const vector<int>& comps) const
|
|
{
|
|
UTIL_THROW_IF(comps.size() != kBleuNgramOrder * 2 + 1, util::Exception, "Error");
|
|
|
|
float logbleu = 0.0;
|
|
for (size_t i = 0; i < kBleuNgramOrder; ++i) {
|
|
if (comps[2*i] == 0) {
|
|
return 0.0;
|
|
}
|
|
logbleu += log(comps[2*i]) - log(comps[2*i+1]);
|
|
|
|
}
|
|
logbleu /= kBleuNgramOrder;
|
|
// reflength divided by test length
|
|
const float brevity = 1.0 - static_cast<float>(comps[kBleuNgramOrder * 2]) / comps[1];
|
|
if (brevity < 0.0) {
|
|
logbleu += brevity;
|
|
}
|
|
return exp(logbleu);
|
|
}
|
|
|
|
int BleuDocScorer::CalcReferenceLength(size_t doc_id, size_t sentence_id, size_t length)
|
|
{
|
|
switch (m_ref_length_type) {
|
|
case AVERAGE:
|
|
return m_references[doc_id]->get().at(sentence_id)->CalcAverage();
|
|
break;
|
|
case CLOSEST:
|
|
return m_references[doc_id]->get().at(sentence_id)->CalcClosest(length);
|
|
break;
|
|
case SHORTEST:
|
|
return m_references[doc_id]->get().at(sentence_id)->CalcShortest();
|
|
break;
|
|
default:
|
|
cerr << "unknown reference types." << endl;
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
}
|
|
|