mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-07 12:10:36 +03:00
1963 lines
92 KiB
Python
Executable File
1963 lines
92 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
# Author: Rico Sennrich <sennrich [AT] cl.uzh.ch>
|
|
|
|
# This program handles the combination of Moses phrase tables, either through
|
|
# linear interpolation of the phrase translation probabilities/lexical weights,
|
|
# or through a recomputation based on the (weighted) combined counts.
|
|
#
|
|
# It also supports an automatic search for weights that minimize the cross-entropy
|
|
# between the model and a tuning set of word/phrase alignments.
|
|
|
|
# for usage information, run
|
|
# python tmcombine.py -h
|
|
# you can also check the docstrings of Combine_TMs() for more information and find some example commands in the function test()
|
|
|
|
|
|
# Some general things to note:
|
|
# - Different combination algorithms require different statistics. To be on the safe side, use the option `-write-lexical-counts` when training models.
|
|
# - The script assumes that phrase tables are sorted (to allow incremental, more memory-friendly processing). sort with LC_ALL=C.
|
|
# - Some configurations require additional statistics that are loaded in memory (lexical tables; complete list of target phrases). If memory consumption is a problem, use the option --lowmem (slightly slower and writes temporary files to disk), or consider pruning your phrase table before combining (e.g. using Johnson et al. 2007).
|
|
# - The script can read/write gzipped files, but the Python implementation is slow. You're better off unzipping the files on the command line and working with the unzipped files.
|
|
# - The cross-entropy estimation assumes that phrase tables contain true probability distributions (i.e. a probability mass of 1 for each conditional probability distribution). If this is not true, the results are skewed.
|
|
# - Unknown phrase pairs are not considered for the cross-entropy estimation. A comparison of models with different vocabularies may be misleading.
|
|
# - Don't directly compare cross-entropies obtained from a combination with different modes. Depending on how some corner cases are treated, linear interpolation does not distribute full probability mass and thus shows higher (i.e. worse) cross-entropies.
|
|
|
|
|
|
from __future__ import division, unicode_literals
|
|
import sys
|
|
import os
|
|
import gzip
|
|
import argparse
|
|
import copy
|
|
import re
|
|
from math import log, exp
|
|
from collections import defaultdict
|
|
from operator import mul
|
|
from tempfile import NamedTemporaryFile
|
|
from subprocess import Popen
|
|
try:
|
|
from itertools import izip
|
|
except:
|
|
izip = zip
|
|
|
|
try:
|
|
from lxml import etree as ET
|
|
except:
|
|
import xml.etree.cElementTree as ET
|
|
|
|
try:
|
|
from scipy.optimize.lbfgsb import fmin_l_bfgs_b
|
|
optimizer = 'l-bfgs'
|
|
except:
|
|
optimizer = 'hillclimb'
|
|
|
|
class Moses():
|
|
"""Moses interface for loading/writing models
|
|
to support other phrase table formats, subclass this and overwrite the relevant functions
|
|
"""
|
|
|
|
def __init__(self,models,number_of_features):
|
|
|
|
self.number_of_features = number_of_features
|
|
self.models = models
|
|
|
|
#example item (assuming mode=='counts' and one feature): phrase_pairs['the house']['das haus'] = [[[10,100]],['0-0 1-1']]
|
|
self.phrase_pairs = defaultdict(lambda: defaultdict(lambda: [[[0]*len(self.models) for i in range(self.number_of_features)],[]]))
|
|
self.phrase_source = defaultdict(lambda: [0]*len(self.models))
|
|
self.phrase_target = defaultdict(lambda: [0]*len(self.models))
|
|
|
|
self.reordering_pairs = defaultdict(lambda: defaultdict(lambda: [[0]*len(self.models) for i in range(self.number_of_features)]))
|
|
|
|
self.word_pairs_e2f = defaultdict(lambda: defaultdict(lambda: [0]*len(self.models)))
|
|
self.word_pairs_f2e = defaultdict(lambda: defaultdict(lambda: [0]*len(self.models)))
|
|
self.word_source = defaultdict(lambda: [0]*len(self.models))
|
|
self.word_target = defaultdict(lambda: [0]*len(self.models))
|
|
|
|
self.require_alignment = False
|
|
|
|
|
|
def open_table(self,model,table,mode='r'):
|
|
"""define which paths to open for lexical tables and phrase tables.
|
|
we assume canonical Moses structure, but feel free to overwrite this
|
|
"""
|
|
|
|
if table == 'reordering-table':
|
|
table = 'reordering-table.wbe-msd-bidirectional-fe'
|
|
|
|
filename = os.path.join(model,'model',table)
|
|
fileobj = handle_file(filename,'open',mode)
|
|
return fileobj
|
|
|
|
|
|
def load_phrase_features(self,line,priority,i,mode='interpolate',store='pairs',filter_by=None,filter_by_src=None,filter_by_target=None,inverted=False,flags=None):
|
|
"""take single phrase table line and store probablities in internal data structure"""
|
|
|
|
src = line[0]
|
|
target = line[1]
|
|
|
|
if inverted:
|
|
src,target = target,src
|
|
|
|
if (store == 'all' or store == 'pairs') and (priority < 10 or (src in self.phrase_pairs and target in self.phrase_pairs[src])) and not (filter_by and not (src in filter_by and target in filter_by[src])):
|
|
|
|
self.store_info(src,target,line)
|
|
|
|
scores = line[2].split()
|
|
if len(scores) <self.number_of_features:
|
|
sys.stderr.write('Error: model only has {0} features. Expected {1}.\n'.format(len(scores),self.number_of_features))
|
|
exit()
|
|
|
|
scores = scores[:self.number_of_features]
|
|
model_probabilities = map(float,scores)
|
|
phrase_probabilities = self.phrase_pairs[src][target][0]
|
|
|
|
if mode == 'counts' and not priority == 2: #priority 2 is MAP
|
|
try:
|
|
counts = map(float,line[-1].split())
|
|
try:
|
|
target_count,src_count,joint_count = counts
|
|
joint_count_e2f = joint_count
|
|
joint_count_f2e = joint_count
|
|
except ValueError:
|
|
# possibly old-style phrase table with 2 counts in last column, or phrase table produced by tmcombine
|
|
# note: since each feature has different weight vector, we may have two different phrase pair frequencies
|
|
target_count,src_count = counts
|
|
i_e2f = flags['i_e2f']
|
|
i_f2e = flags['i_f2e']
|
|
joint_count_e2f = model_probabilities[i_e2f] * target_count
|
|
joint_count_f2e = model_probabilities[i_f2e] * src_count
|
|
except:
|
|
sys.stderr.write(str(b" ||| ".join(line))+b'\n')
|
|
sys.stderr.write('ERROR: counts are missing or misformatted. Maybe your phrase table is from an older Moses version that doesn\'t store counts or word alignment?\n')
|
|
raise
|
|
|
|
i_e2f = flags['i_e2f']
|
|
i_f2e = flags['i_f2e']
|
|
model_probabilities[i_e2f] = joint_count_e2f
|
|
model_probabilities[i_f2e] = joint_count_f2e
|
|
|
|
for j,p in enumerate(model_probabilities):
|
|
phrase_probabilities[j][i] = p
|
|
|
|
# mark that the src/target phrase has been seen.
|
|
# needed for re-normalization during linear interpolation
|
|
if (store == 'all' or store == 'source') and not (filter_by_src and not src in filter_by_src):
|
|
if mode == 'counts' and not priority == 2: #priority 2 is MAP
|
|
try:
|
|
self.phrase_source[src][i] = float(line[-1].split()[1])
|
|
except:
|
|
sys.stderr.write(str(line)+'\n')
|
|
sys.stderr.write('ERROR: Counts are missing or misformatted. Maybe your phrase table is from an older Moses version that doesn\'t store counts or word alignment?\n')
|
|
raise
|
|
else:
|
|
self.phrase_source[src][i] = 1
|
|
|
|
if (store == 'all' or store == 'target') and not (filter_by_target and not target in filter_by_target):
|
|
if mode == 'counts' and not priority == 2: #priority 2 is MAP
|
|
try:
|
|
self.phrase_target[target][i] = float(line[-1].split()[0])
|
|
except:
|
|
sys.stderr.write(str(line)+'\n')
|
|
sys.stderr.write('ERROR: Counts are missing or misformatted. Maybe your phrase table is from an older Moses version that doesn\'t store counts or word alignment?\n')
|
|
raise
|
|
else:
|
|
self.phrase_target[target][i] = 1
|
|
|
|
|
|
def load_reordering_probabilities(self,line,priority,i,**unused):
|
|
"""take single reordering table line and store probablities in internal data structure"""
|
|
|
|
src = line[0]
|
|
target = line[1]
|
|
|
|
model_probabilities = map(float,line[2].split())
|
|
reordering_probabilities = self.reordering_pairs[src][target]
|
|
|
|
try:
|
|
for j,p in enumerate(model_probabilities):
|
|
reordering_probabilities[j][i] = p
|
|
except IndexError:
|
|
sys.stderr.write('\nIndexError: Did you correctly specify the number of reordering features? (--number_of_features N in command line)\n')
|
|
exit()
|
|
|
|
def traverse_incrementally(self,table,models,load_lines,store_flag,mode='interpolate',inverted=False,lowmem=False,flags=None):
|
|
"""hack-ish way to find common phrase pairs in multiple models in one traversal without storing it all in memory
|
|
relies on alphabetical sorting of phrase table.
|
|
"""
|
|
|
|
increment = -1
|
|
stack = ['']*len(self.models)
|
|
|
|
while increment:
|
|
|
|
self.phrase_pairs = defaultdict(lambda: defaultdict(lambda: [[[0]*len(self.models) for i in range(self.number_of_features)],[]]))
|
|
self.reordering_pairs = defaultdict(lambda: defaultdict(lambda: [[0]*len(self.models) for i in range(self.number_of_features)]))
|
|
self.phrase_source = defaultdict(lambda: [0]*len(self.models))
|
|
|
|
if lowmem:
|
|
self.phrase_target = defaultdict(lambda: [0]*len(self.models))
|
|
|
|
for model,priority,i in models:
|
|
|
|
if stack[i]:
|
|
if increment != stack[i][0]:
|
|
continue
|
|
else:
|
|
load_lines(stack[i],priority,i,mode=mode,store=store_flag,inverted=inverted,flags=flags)
|
|
stack[i] = ''
|
|
|
|
for line in model:
|
|
|
|
line = line.rstrip().split(b' ||| ')
|
|
|
|
if increment != line[0]:
|
|
stack[i] = line
|
|
break
|
|
|
|
load_lines(line,priority,i,mode=mode,store=store_flag,inverted=inverted,flags=flags)
|
|
|
|
yield 1
|
|
|
|
#calculate which source phrase to process next
|
|
lines = [line[0] + b' |' for line in stack if line]
|
|
if lines:
|
|
increment = min(lines)[:-2]
|
|
else:
|
|
increment = None
|
|
|
|
|
|
def load_word_probabilities(self,line,side,i,priority,e2f_filter=None,f2e_filter=None):
|
|
"""process single line of lexical table"""
|
|
|
|
a, b, prob = line.split(b' ')
|
|
|
|
if side == 'e2f' and (not e2f_filter or a in e2f_filter and b in e2f_filter[a]):
|
|
|
|
self.word_pairs_e2f[a][b][i] = float(prob)
|
|
|
|
elif side == 'f2e' and (not f2e_filter or a in f2e_filter and b in f2e_filter[a]):
|
|
|
|
self.word_pairs_f2e[a][b][i] = float(prob)
|
|
|
|
|
|
def load_word_counts(self,line,side,i,priority,e2f_filter=None,f2e_filter=None,flags=None):
|
|
"""process single line of lexical table"""
|
|
|
|
a, b, ab_count, b_count = line.split(b' ')
|
|
|
|
if side == 'e2f':
|
|
|
|
if priority == 2: #MAP
|
|
if not e2f_filter or a in e2f_filter:
|
|
if not e2f_filter or b in e2f_filter[a]:
|
|
self.word_pairs_e2f[a][b][i] = float(ab_count)/float(b_count)
|
|
self.word_target[b][i] = 1
|
|
else:
|
|
if not e2f_filter or a in e2f_filter:
|
|
if not e2f_filter or b in e2f_filter[a]:
|
|
self.word_pairs_e2f[a][b][i] = float(ab_count)
|
|
self.word_target[b][i] = float(b_count)
|
|
|
|
elif side == 'f2e':
|
|
|
|
if priority == 2: #MAP
|
|
if not f2e_filter or a in f2e_filter and b in f2e_filter[a]:
|
|
if not f2e_filter or b in f2e_filter[a]:
|
|
self.word_pairs_f2e[a][b][i] = float(ab_count)/float(b_count)
|
|
self.word_source[b][i] = 1
|
|
else:
|
|
if not f2e_filter or a in f2e_filter and b in f2e_filter[a]:
|
|
if not f2e_filter or b in f2e_filter[a]:
|
|
self.word_pairs_f2e[a][b][i] = float(ab_count)
|
|
self.word_source[b][i] = float(b_count)
|
|
|
|
|
|
def load_lexical_tables(self,models,mode,e2f_filter=None,f2e_filter=None):
|
|
"""open and load lexical tables into data structure"""
|
|
|
|
if mode == 'counts':
|
|
files = ['lex.counts.e2f','lex.counts.f2e']
|
|
load_lines = self.load_word_counts
|
|
|
|
else:
|
|
files = ['lex.e2f','lex.f2e']
|
|
load_lines = self.load_word_probabilities
|
|
|
|
j = 0
|
|
|
|
for f in files:
|
|
models_prioritized = [(self.open_table(model,f),priority,i) for (model,priority,i) in priority_sort_models(models)]
|
|
|
|
for model,priority,i in models_prioritized:
|
|
for line in model:
|
|
if not j % 100000:
|
|
sys.stderr.write('.')
|
|
j += 1
|
|
load_lines(line,f[-3:],i,priority,e2f_filter=e2f_filter,f2e_filter=f2e_filter)
|
|
|
|
|
|
def store_info(self,src,target,line):
|
|
"""store alignment info and comment section for re-use in output"""
|
|
|
|
if len(line) == 5:
|
|
self.phrase_pairs[src][target][1] = line[3:5]
|
|
|
|
# assuming that alignment is empty
|
|
elif len(line) == 4:
|
|
if self.require_alignment:
|
|
sys.stderr.write('Error: unexpected phrase table format. Your current configuration requires alignment information. Make sure you trained your model with -phrase-word-alignment (default in newer Moses versions)\n')
|
|
exit()
|
|
|
|
self.phrase_pairs[src][target][1] = [b'',line[3].lstrip(b'| ')]
|
|
|
|
else:
|
|
sys.stderr.write('Error: unexpected phrase table format. Are you using a very old/new version of Moses with different formatting?\n')
|
|
exit()
|
|
|
|
|
|
def get_word_alignments(self,src,target,cache=False,mycache={}):
|
|
"""from the Moses phrase table alignment info in the form "0-0 1-0",
|
|
get the aligned word pairs / NULL alignments
|
|
"""
|
|
|
|
if cache:
|
|
if (src,target) in mycache:
|
|
return mycache[(src,target)]
|
|
|
|
try:
|
|
alignment = self.phrase_pairs[src][target][1][0]
|
|
except:
|
|
return None,None
|
|
|
|
src_list = src.split(b' ')
|
|
target_list = target.split(b' ')
|
|
|
|
textual_e2f = [[s,[]] for s in src_list]
|
|
textual_f2e = [[t,[]] for t in target_list]
|
|
|
|
for pair in alignment.split(b' '):
|
|
s,t = pair.split('-')
|
|
s,t = int(s),int(t)
|
|
|
|
textual_e2f[s][1].append(target_list[t])
|
|
textual_f2e[t][1].append(src_list[s])
|
|
|
|
for s,t in textual_e2f:
|
|
if not t:
|
|
t.append('NULL')
|
|
|
|
for s,t in textual_f2e:
|
|
if not t:
|
|
t.append('NULL')
|
|
|
|
#tupelize so we can use the value as dictionary keys
|
|
for i in range(len(textual_e2f)):
|
|
textual_e2f[i][1] = tuple(textual_e2f[i][1])
|
|
|
|
for i in range(len(textual_f2e)):
|
|
textual_f2e[i][1] = tuple(textual_f2e[i][1])
|
|
|
|
if cache:
|
|
mycache[(src,target)] = textual_e2f,textual_f2e
|
|
|
|
return textual_e2f,textual_f2e
|
|
|
|
|
|
def write_phrase_table(self,src,target,weights,features,mode,flags):
|
|
"""convert data to string in Moses phrase table format"""
|
|
|
|
# if one feature value is 0 (either because of loglinear interpolation or rounding to 0), don't write it to phrasetable
|
|
# (phrase pair will end up with probability zero in log-linear model anyway)
|
|
if 0 in features:
|
|
return ''
|
|
|
|
# information specific to Moses model: alignment info and comment section with target and source counts
|
|
alignment,comments = self.phrase_pairs[src][target][1]
|
|
if alignment:
|
|
extra_space = b' '
|
|
else:
|
|
extra_space = b''
|
|
|
|
if mode == 'counts':
|
|
i_e2f = flags['i_e2f']
|
|
i_f2e = flags['i_f2e']
|
|
srccount = dot_product(self.phrase_source[src],weights[i_f2e])
|
|
targetcount = dot_product(self.phrase_target[target],weights[i_e2f])
|
|
comments = b"%s %s" %(targetcount,srccount)
|
|
|
|
features = b' '.join([b'%.6g' %(f) for f in features])
|
|
|
|
if flags['add_origin_features']:
|
|
origin_features = map(lambda x: 2.718**bool(x),self.phrase_pairs[src][target][0][0]) # 1 if phrase pair doesn't occur in model, 2.718 if it does
|
|
origin_features = b' '.join([b'%.4f' %(f) for f in origin_features]) + ' '
|
|
else:
|
|
origin_features = b''
|
|
if flags['write_phrase_penalty']:
|
|
phrase_penalty = b' 2.718'
|
|
else:
|
|
phrase_penalty = b''
|
|
line = b"%s ||| %s ||| %s%s %s||| %s%s||| %s\n" %(src,target,features,origin_features,phrase_penalty,alignment,extra_space,comments)
|
|
return line
|
|
|
|
|
|
|
|
def write_lexical_file(self,direction, path, weights,mode):
|
|
|
|
if mode == 'counts':
|
|
bridge = '.counts'
|
|
else:
|
|
bridge = ''
|
|
|
|
fobj = handle_file("{0}{1}.{2}".format(path,bridge,direction),'open',mode='w')
|
|
sys.stderr.write('Writing {0}{1}.{2}\n'.format(path,bridge,direction))
|
|
|
|
if direction == 'e2f':
|
|
word_pairs = self.word_pairs_e2f
|
|
marginal = self.word_target
|
|
|
|
elif direction == 'f2e':
|
|
word_pairs = self.word_pairs_f2e
|
|
marginal = self.word_source
|
|
|
|
for x in sorted(word_pairs):
|
|
for y in sorted(word_pairs[x]):
|
|
xy = dot_product(word_pairs[x][y],weights)
|
|
fobj.write(b"%s %s %s" %(x,y,xy))
|
|
|
|
if mode == 'counts':
|
|
fobj.write(b" %s\n" %(dot_product(marginal[y],weights)))
|
|
else:
|
|
fobj.write(b'\n')
|
|
|
|
handle_file("{0}{1}.{2}".format(path,bridge,direction),'close',fobj,mode='w')
|
|
|
|
|
|
|
|
def write_reordering_table(self,src,target,features):
|
|
"""convert data to string in Moses reordering table format"""
|
|
|
|
# if one feature value is 0 (either because of loglinear interpolation or rounding to 0), don't write it to reordering table
|
|
# (phrase pair will end up with probability zero in log-linear model anyway)
|
|
if 0 in features:
|
|
return ''
|
|
|
|
features = b' '.join([b'%.6g' %(f) for f in features])
|
|
|
|
line = b"%s ||| %s ||| %s\n" %(src,target,features)
|
|
return line
|
|
|
|
|
|
def create_inverse(self,fobj,tempdir=None):
|
|
"""swap source and target phrase in the phrase table, and then sort (by target phrase)"""
|
|
|
|
inverse = NamedTemporaryFile(prefix='inv_unsorted',delete=False,dir=tempdir)
|
|
swap = re.compile(b'(.+?) \|\|\| (.+?) \|\|\|')
|
|
|
|
# just swap source and target phrase, and leave order of scores etc. intact.
|
|
# For better compatibility with existing codebase, we swap the order of the phrases back for processing
|
|
for line in fobj:
|
|
inverse.write(swap.sub(b'\\2 ||| \\1 |||',line,1))
|
|
inverse.close()
|
|
|
|
inverse_sorted = sort_file(inverse.name,tempdir=tempdir)
|
|
os.remove(inverse.name)
|
|
|
|
return inverse_sorted
|
|
|
|
|
|
def merge(self,pt_normal, pt_inverse, pt_out, mode='interpolate'):
|
|
"""merge two phrasetables (the latter having been inverted to calculate p(s|t) and lex(s|t) in sorted order)
|
|
Assumes that p(s|t) and lex(s|t) are in first table half, p(t|s) and lex(t|s) in second"""
|
|
|
|
for line,line2 in izip(pt_normal,pt_inverse):
|
|
|
|
line = line.split(b' ||| ')
|
|
line2 = line2.split(b' ||| ')
|
|
|
|
#scores
|
|
mid = int(self.number_of_features/2)
|
|
scores1 = line[2].split()
|
|
scores2 = line2[2].split()
|
|
line[2] = b' '.join(scores2[:mid]+scores1[mid:])
|
|
|
|
# marginal counts
|
|
if mode == 'counts':
|
|
src_count = line[-1].split()[1]
|
|
target_count = line2[-1].split()[0]
|
|
line[-1] = b' '.join([target_count,src_count]) + b'\n'
|
|
|
|
pt_out.write(b' ||| '.join(line))
|
|
|
|
pt_normal.close()
|
|
pt_inverse.close()
|
|
pt_out.close()
|
|
|
|
|
|
|
|
class TigerXML():
|
|
"""interface to load reference word alignments from TigerXML corpus.
|
|
Tested on SMULTRON (http://kitt.cl.uzh.ch/kitt/smultron/)
|
|
"""
|
|
|
|
def __init__(self,alignment_xml):
|
|
"""only argument is TigerXML file
|
|
"""
|
|
|
|
self.treebanks = self._open_treebanks(alignment_xml)
|
|
self.word_pairs = defaultdict(lambda: defaultdict(int))
|
|
self.word_source = defaultdict(int)
|
|
self.word_target = defaultdict(int)
|
|
|
|
|
|
def load_word_pairs(self,src,target):
|
|
"""load word pairs. src and target are the itentifiers of the source and target language in the XML"""
|
|
|
|
if not src or not target:
|
|
sys.stderr.write('Error: Source and/or target language not specified. Required for TigerXML extraction.\n')
|
|
exit()
|
|
|
|
alignments = self._get_aligned_ids(src,target)
|
|
self._textualize_alignments(src,target,alignments)
|
|
|
|
|
|
def _open_treebanks(self,alignment_xml):
|
|
"""Parallel XML format references monolingual files. Open all."""
|
|
|
|
alignment_path = os.path.dirname(alignment_xml)
|
|
align_xml = ET.parse(alignment_xml)
|
|
|
|
treebanks = {}
|
|
treebanks['aligned'] = align_xml
|
|
|
|
for treebank in align_xml.findall('//treebank'):
|
|
treebank_id = treebank.get('id')
|
|
filename = treebank.get('filename')
|
|
|
|
if not os.path.isabs(filename):
|
|
filename = os.path.join(alignment_path,filename)
|
|
|
|
treebanks[treebank_id] = ET.parse(filename)
|
|
|
|
return treebanks
|
|
|
|
|
|
def _get_aligned_ids(self,src,target):
|
|
"""first step: find which nodes are aligned."""
|
|
|
|
|
|
alignments = []
|
|
ids = defaultdict(dict)
|
|
|
|
for alignment in self.treebanks['aligned'].findall('//align'):
|
|
|
|
newpair = {}
|
|
|
|
if len(alignment) != 2:
|
|
sys.stderr.write('Error: alignment with ' + str(len(alignment)) + ' children. Expected 2. Skipping.\n')
|
|
continue
|
|
|
|
for node in alignment:
|
|
lang = node.get('treebank_id')
|
|
node_id = node.get('node_id')
|
|
newpair[lang] = node_id
|
|
|
|
if not (src in newpair and target in newpair):
|
|
sys.stderr.write('Error: source and target languages don\'t match. Skipping.\n')
|
|
continue
|
|
|
|
# every token may only appear in one alignment pair;
|
|
# if it occurs in multiple, we interpret them as one 1-to-many or many-to-1 alignment
|
|
if newpair[src] in ids[src]:
|
|
idx = ids[src][newpair[src]]
|
|
alignments[idx][1].append(newpair[target])
|
|
|
|
elif newpair[target] in ids[target]:
|
|
idx = ids[target][newpair[target]]
|
|
alignments[idx][0].append(newpair[src])
|
|
|
|
else:
|
|
idx = len(alignments)
|
|
alignments.append(([newpair[src]],[newpair[target]]))
|
|
ids[src][newpair[src]] = idx
|
|
ids[target][newpair[target]] = idx
|
|
|
|
alignments = self._discard_discontinuous(alignments)
|
|
|
|
return alignments
|
|
|
|
|
|
def _discard_discontinuous(self,alignments):
|
|
"""discard discontinuous word sequences (which we can't use for phrase-based SMT systems)
|
|
and make sure that sequence is in correct order.
|
|
"""
|
|
|
|
new_alignments = []
|
|
|
|
for alignment in alignments:
|
|
new_pair = []
|
|
|
|
for sequence in alignment:
|
|
|
|
sequence_split = [t_id.split('_') for t_id in sequence]
|
|
|
|
#check if all words come from the same sentence
|
|
sentences = [item[0] for item in sequence_split]
|
|
if not len(set(sentences)) == 1:
|
|
#sys.stderr.write('Warning. Word sequence crossing sentence boundary. Discarding.\n')
|
|
#sys.stderr.write(str(sequence)+'\n')
|
|
continue
|
|
|
|
|
|
#sort words and check for discontinuities.
|
|
try:
|
|
tokens = sorted([int(item[1]) for item in sequence_split])
|
|
except ValueError:
|
|
#sys.stderr.write('Warning. Not valid word IDs. Discarding.\n')
|
|
#sys.stderr.write(str(sequence)+'\n')
|
|
continue
|
|
|
|
if not tokens[-1]-tokens[0] == len(tokens)-1:
|
|
#sys.stderr.write('Warning. Discontinuous word sequence(?). Discarding.\n')
|
|
#sys.stderr.write(str(sequence)+'\n')
|
|
continue
|
|
|
|
out_sequence = [sentences[0]+'_'+str(token) for token in tokens]
|
|
new_pair.append(out_sequence)
|
|
|
|
if len(new_pair) == 2:
|
|
new_alignments.append(new_pair)
|
|
|
|
return new_alignments
|
|
|
|
|
|
def _textualize_alignments(self,src,target,alignments):
|
|
"""Knowing which nodes are aligned, get actual words that are aligned."""
|
|
|
|
words = defaultdict(dict)
|
|
|
|
for text in [text for text in self.treebanks if not text == 'aligned']:
|
|
|
|
#TODO: Make lowercasing optional
|
|
for terminal in self.treebanks[text].findall('//t'):
|
|
words[text][terminal.get('id')] = terminal.get('word').lower()
|
|
|
|
|
|
for (src_ids, target_ids) in alignments:
|
|
|
|
try:
|
|
src_text = ' '.join((words[src][src_id] for src_id in src_ids))
|
|
except KeyError:
|
|
#sys.stderr.write('Warning. ID not found: '+ str(src_ids) +'\n')
|
|
continue
|
|
|
|
try:
|
|
target_text = ' '.join((words[target][target_id] for target_id in target_ids))
|
|
except KeyError:
|
|
#sys.stderr.write('Warning. ID not found: '+ str(target_ids) +'\n')
|
|
continue
|
|
|
|
self.word_pairs[src_text][target_text] += 1
|
|
self.word_source[src_text] += 1
|
|
self.word_target[target_text] += 1
|
|
|
|
|
|
|
|
class Moses_Alignment():
|
|
"""interface to load reference phrase alignment from corpus aligend with Giza++
|
|
and with extraction heuristics as applied by the Moses toolkit.
|
|
|
|
"""
|
|
|
|
def __init__(self,alignment_file):
|
|
|
|
self.alignment_file = alignment_file
|
|
self.word_pairs = defaultdict(lambda: defaultdict(int))
|
|
self.word_source = defaultdict(int)
|
|
self.word_target = defaultdict(int)
|
|
|
|
|
|
def load_word_pairs(self,src_lang,target_lang):
|
|
"""main function. overwrite this to import data in different format."""
|
|
|
|
fileobj = handle_file(self.alignment_file,'open','r')
|
|
|
|
for line in fileobj:
|
|
|
|
line = line.split(b' ||| ')
|
|
|
|
src = line[0]
|
|
target = line[1]
|
|
|
|
self.word_pairs[src][target] += 1
|
|
self.word_source[src] += 1
|
|
self.word_target[target] += 1
|
|
|
|
|
|
def dot_product(a,b):
|
|
"""calculate dot product from two lists"""
|
|
|
|
# optimized for PyPy (much faster than enumerate/map)
|
|
s = 0
|
|
i = 0
|
|
for x in a:
|
|
s += x * b[i]
|
|
i += 1
|
|
|
|
return s
|
|
|
|
|
|
def priority_sort_models(models):
|
|
"""primary models should have priority before supplementary models.
|
|
zipped with index to know which weight model belongs to
|
|
"""
|
|
|
|
return [(model,priority,i) for (i,(model,priority)) in sorted(zip(range(len(models)),models),key=lambda x: x[1][1])]
|
|
|
|
|
|
def cross_entropy(model_interface,reference_interface,weights,score,mode,flags):
|
|
"""calculate cross entropy given all necessary information.
|
|
don't call this directly, but use one of the Combine_TMs methods.
|
|
"""
|
|
|
|
weights = normalize_weights(weights,mode,flags)
|
|
|
|
if 'compare_cross-entropies' in flags and flags['compare_cross-entropies']:
|
|
num_results = len(model_interface.models)
|
|
else:
|
|
num_results = 1
|
|
|
|
cross_entropies = [[0]*num_results for i in range(model_interface.number_of_features)]
|
|
oov = [0]*num_results
|
|
oov2 = 0
|
|
other_translations = [0]*num_results
|
|
ignored = [0]*num_results
|
|
n = [0]*num_results
|
|
total_pairs = 0
|
|
|
|
for src in reference_interface.word_pairs:
|
|
for target in reference_interface.word_pairs[src]:
|
|
|
|
c = reference_interface.word_pairs[src][target]
|
|
|
|
for i in range(num_results):
|
|
if src in model_interface.phrase_pairs and target in model_interface.phrase_pairs[src]:
|
|
|
|
if ('compare_cross-entropies' in flags and flags['compare_cross-entropies']) or ('intersected_cross-entropies' in flags and flags['intersected_cross-entropies']):
|
|
|
|
if 0 in model_interface.phrase_pairs[src][target][0][0]: #only use intersection of models for comparability
|
|
|
|
# update unknown words statistics
|
|
if model_interface.phrase_pairs[src][target][0][0][i]:
|
|
ignored[i] += c
|
|
elif src in model_interface.phrase_source and model_interface.phrase_source[src][i]:
|
|
other_translations[i] += c
|
|
else:
|
|
oov[i] += c
|
|
|
|
continue
|
|
|
|
if ('compare_cross-entropies' in flags and flags['compare_cross-entropies']):
|
|
tmp_weights = [[0]*i+[1]+[0]*(num_results-i-1)]*model_interface.number_of_features
|
|
elif ('intersected_cross-entropies' in flags and flags['intersected_cross-entropies']):
|
|
tmp_weights = weights
|
|
|
|
features = score(tmp_weights,src,target,model_interface,flags)
|
|
|
|
else:
|
|
features = score(weights,src,target,model_interface,flags)
|
|
|
|
#if weight is so low that feature gets probability zero
|
|
if 0 in features:
|
|
#sys.stderr.write('Warning: 0 probability in model {0}: source phrase: {1!r}; target phrase: {2!r}\n'.format(i,src,target))
|
|
#sys.stderr.write('Possible reasons: 0 probability in phrase table; very low (or 0) weight; recompute lexweight and different alignments\n')
|
|
#sys.stderr.write('Phrase pair is ignored for cross_entropy calculation\n\n')
|
|
continue
|
|
|
|
n[i] += c
|
|
for j in range(model_interface.number_of_features):
|
|
cross_entropies[j][i] -= log(features[j],2)*c
|
|
|
|
elif src in model_interface.phrase_source and not ('compare_cross-entropies' in flags and flags['compare_cross-entropies']):
|
|
other_translations[i] += c
|
|
|
|
else:
|
|
oov2 += c
|
|
|
|
total_pairs += c
|
|
|
|
|
|
oov2 = int(oov2/num_results)
|
|
|
|
for i in range(num_results):
|
|
try:
|
|
for j in range(model_interface.number_of_features):
|
|
cross_entropies[j][i] /= n[i]
|
|
except ZeroDivisionError:
|
|
sys.stderr.write('Warning: no matching phrase pairs between reference set and model\n')
|
|
for j in range(model_interface.number_of_features):
|
|
cross_entropies[j][i] = 0
|
|
|
|
|
|
if 'compare_cross-entropies' in flags and flags['compare_cross-entropies']:
|
|
return [tuple([ce[i] for ce in cross_entropies]) + (other_translations[i],oov[i],ignored[i],n[i],total_pairs) for i in range(num_results)], (n[0],total_pairs,oov2)
|
|
else:
|
|
return tuple([ce[0] for ce in cross_entropies]) + (other_translations[0],oov2,total_pairs)
|
|
|
|
|
|
def cross_entropy_light(model_interface,reference_interface,weights,score,mode,flags,cache):
|
|
"""calculate cross entropy given all necessary information.
|
|
don't call this directly, but use one of the Combine_TMs methods.
|
|
Same as cross_entropy, but optimized for speed: it doesn't generate all of the statistics,
|
|
doesn't normalize, and uses caching.
|
|
"""
|
|
weights = normalize_weights(weights,mode,flags)
|
|
cross_entropies = [0]*model_interface.number_of_features
|
|
|
|
for (src,target,c) in cache:
|
|
features = score(weights,src,target,model_interface,flags,cache=True)
|
|
|
|
if 0 in features:
|
|
#sys.stderr.write('Warning: 0 probability in model {0}: source phrase: {1!r}; target phrase: {2!r}\n'.format(i,src,target))
|
|
#sys.stderr.write('Possible reasons: 0 probability in phrase table; very low (or 0) weight; recompute lexweight and different alignments\n')
|
|
#sys.stderr.write('Phrase pair is ignored for cross_entropy calculation\n\n')
|
|
continue
|
|
|
|
for i in range(model_interface.number_of_features):
|
|
cross_entropies[i] -= log(features[i],2)*c
|
|
|
|
return cross_entropies
|
|
|
|
|
|
def _get_reference_cache(reference_interface,model_interface):
|
|
"""creates a data structure that allows for a quick access
|
|
to all relevant reference set phrase/word pairs and their frequencies.
|
|
"""
|
|
cache = []
|
|
n = 0
|
|
|
|
for src in reference_interface.word_pairs:
|
|
for target in reference_interface.word_pairs[src]:
|
|
if src in model_interface.phrase_pairs and target in model_interface.phrase_pairs[src]:
|
|
c = reference_interface.word_pairs[src][target]
|
|
cache.append((src,target,c))
|
|
n += c
|
|
|
|
return cache,n
|
|
|
|
|
|
def _get_lexical_filter(reference_interface,model_interface):
|
|
"""returns dictionaries that store the words and word pairs needed
|
|
for perplexity optimization. We can use these dicts to load fewer data into memory for optimization."""
|
|
|
|
e2f_filter = defaultdict(set)
|
|
f2e_filter = defaultdict(set)
|
|
|
|
for src in reference_interface.word_pairs:
|
|
for target in reference_interface.word_pairs[src]:
|
|
if src in model_interface.phrase_pairs and target in model_interface.phrase_pairs[src]:
|
|
e2f_alignment,f2e_alignment = model_interface.get_word_alignments(src,target)
|
|
|
|
for s,t_list in e2f_alignment:
|
|
for t in t_list:
|
|
e2f_filter[s].add(t)
|
|
|
|
for t,s_list in f2e_alignment:
|
|
for s in s_list:
|
|
f2e_filter[t].add(s)
|
|
|
|
return e2f_filter,f2e_filter
|
|
|
|
|
|
def _hillclimb_move(weights,stepsize,mode,flags):
|
|
"""Move function for hillclimb algorithm. Updates each weight by stepsize."""
|
|
|
|
for i,w in enumerate(weights):
|
|
yield normalize_weights(weights[:i]+[w+stepsize]+weights[i+1:],mode,flags)
|
|
|
|
for i,w in enumerate(weights):
|
|
new = w-stepsize
|
|
if new >= 1e-10:
|
|
yield normalize_weights(weights[:i]+[new]+weights[i+1:],mode,flags)
|
|
|
|
def _hillclimb(scores,best_weights,objective,model_interface,reference_interface,score_function,mode,flags,precision,cache,n):
|
|
"""first (deprecated) implementation of iterative weight optimization."""
|
|
|
|
best = objective(best_weights)
|
|
|
|
i = 0 #counts number of iterations with same stepsize: if greater than 10, it is doubled
|
|
stepsize = 512 # initial stepsize
|
|
move = 1 #whether we found a better set of weights in the current iteration. if not, it is halfed
|
|
sys.stderr.write('Hillclimb: step size: ' + str(stepsize))
|
|
while stepsize > 0.0078:
|
|
|
|
if not move:
|
|
stepsize /= 2
|
|
sys.stderr.write(' ' + str(stepsize))
|
|
i = 0
|
|
move = 1
|
|
continue
|
|
|
|
move = 0
|
|
|
|
for w in _hillclimb_move(list(best_weights),stepsize,mode,flags):
|
|
weights_tuple = tuple(w)
|
|
|
|
if weights_tuple in scores:
|
|
continue
|
|
|
|
scores[weights_tuple] = cross_entropy_light(model_interface,reference_interface,[w for m in range(model_interface.number_of_features)],score_function,mode,flags,cache)
|
|
|
|
if objective(weights_tuple)+precision < best:
|
|
best = objective(weights_tuple)
|
|
best_weights = weights_tuple
|
|
move = 1
|
|
|
|
if i and not i % 10:
|
|
sys.stderr.write('\nIteration '+ str(i) + ' with stepsize ' + str(stepsize) + '. current cross-entropy: ' + str(best) + '- weights: ' + str(best_weights) + ' ')
|
|
stepsize *= 2
|
|
sys.stderr.write('\nIncreasing stepsize: '+ str(stepsize))
|
|
i = 0
|
|
|
|
i += 1
|
|
|
|
return best_weights
|
|
|
|
|
|
def optimize_cross_entropy_hillclimb(model_interface,reference_interface,initial_weights,score_function,mode,flags,precision=0.000001):
|
|
"""find weights that minimize cross-entropy on a tuning set
|
|
deprecated (default is now L-BFGS (optimize_cross_entropy)), but left in for people without SciPy
|
|
"""
|
|
|
|
scores = {}
|
|
|
|
best_weights = tuple(initial_weights[0])
|
|
|
|
cache,n = _get_reference_cache(reference_interface,model_interface)
|
|
|
|
# each objective is a triple: which score to minimize from cross_entropy(), which weights to update accordingly, and a comment that is printed
|
|
objectives = [(lambda x: scores[x][i]/n,[i],'minimize cross-entropy for feature {0}'.format(i)) for i in range(model_interface.number_of_features)]
|
|
|
|
scores[best_weights] = cross_entropy_light(model_interface,reference_interface,initial_weights,score_function,mode,flags,cache)
|
|
final_weights = initial_weights[:]
|
|
final_cross_entropy = [0]*model_interface.number_of_features
|
|
|
|
for i,(objective, features, comment) in enumerate(objectives):
|
|
best_weights = min(scores,key=objective)
|
|
sys.stderr.write('Optimizing objective "' + comment +'"\n')
|
|
best_weights = _hillclimb(scores,best_weights,objective,model_interface,reference_interface,score_function,feature_specific_mode(mode,i,flags),flags,precision,cache,n)
|
|
|
|
sys.stderr.write('\nCross-entropy:' + str(objective(best_weights)) + ' - weights: ' + str(best_weights)+'\n\n')
|
|
|
|
for j in features:
|
|
final_weights[j] = list(best_weights)
|
|
final_cross_entropy[j] = objective(best_weights)
|
|
|
|
return final_weights,final_cross_entropy
|
|
|
|
|
|
def optimize_cross_entropy(model_interface,reference_interface,initial_weights,score_function,mode,flags):
|
|
"""find weights that minimize cross-entropy on a tuning set
|
|
Uses L-BFGS optimization and requires SciPy
|
|
"""
|
|
|
|
if not optimizer == 'l-bfgs':
|
|
sys.stderr.write('SciPy is not installed. Falling back to naive hillclimb optimization (instead of L-BFGS)\n')
|
|
return optimize_cross_entropy_hillclimb(model_interface,reference_interface,initial_weights,score_function,mode,flags)
|
|
|
|
cache,n = _get_reference_cache(reference_interface,model_interface)
|
|
|
|
# each objective is a triple: which score to minimize from cross_entropy(), which weights to update accordingly, and a comment that is printed
|
|
objectives = [(lambda w: cross_entropy_light(model_interface,reference_interface,[[1]+list(w) for m in range(model_interface.number_of_features)],score_function,feature_specific_mode(mode,i,flags),flags,cache)[i],[i],'minimize cross-entropy for feature {0}'.format(i)) for i in range(model_interface.number_of_features)] #optimize cross-entropy for p(s|t)
|
|
|
|
final_weights = initial_weights[:]
|
|
final_cross_entropy = [0]*model_interface.number_of_features
|
|
|
|
for i,(objective, features, comment) in enumerate(objectives):
|
|
sys.stderr.write('Optimizing objective "' + comment +'"\n')
|
|
initial_values = [1]*(len(model_interface.models)-1) # we leave value of first model at 1 and optimize all others (normalized of course)
|
|
best_weights, best_point, data = fmin_l_bfgs_b(objective,initial_values,approx_grad=True,bounds=[(0.000000001,None)]*len(initial_values))
|
|
best_weights = normalize_weights([1]+list(best_weights),feature_specific_mode(mode,i,flags),flags)
|
|
sys.stderr.write('Cross-entropy after L-BFGS optimization: ' + str(best_point/n) + ' - weights: ' + str(best_weights)+'\n')
|
|
|
|
for j in features:
|
|
final_weights[j] = list(best_weights)
|
|
final_cross_entropy[j] = best_point/n
|
|
|
|
return final_weights,final_cross_entropy
|
|
|
|
|
|
def feature_specific_mode(mode,i,flags):
|
|
"""in mode 'counts', only the default Moses features can be recomputed from raw frequencies;
|
|
all other features are interpolated by default.
|
|
This fucntion mostly serves optical purposes (i.e. normalizing a single weight vector for logging),
|
|
since normalize_weights also handles a mix of interpolated and recomputed features.
|
|
"""
|
|
|
|
if mode == 'counts' and i not in [flags['i_e2f'],flags['i_e2f_lex'],flags['i_f2e'],flags['i_f2e_lex']]:
|
|
return 'interpolate'
|
|
else:
|
|
return mode
|
|
|
|
|
|
def redistribute_probability_mass(weights,src,target,interface,flags,mode='interpolate'):
|
|
"""the conditional probability p(x|y) is undefined for cases where p(y) = 0
|
|
this function redistributes the probability mass to only consider models for which p(y) > 0
|
|
"""
|
|
|
|
i_e2f = flags['i_e2f']
|
|
i_e2f_lex = flags['i_e2f_lex']
|
|
i_f2e = flags['i_f2e']
|
|
i_f2e_lex = flags['i_f2e_lex']
|
|
|
|
new_weights = weights[:]
|
|
|
|
if flags['normalize_s_given_t'] == 's':
|
|
|
|
# set weight to 0 for all models where target phrase is unseen (p(s|t)
|
|
new_weights[i_e2f] = map(mul,interface.phrase_source[src],weights[i_e2f])
|
|
if flags['normalize-lexical_weights']:
|
|
new_weights[i_e2f_lex] = map(mul,interface.phrase_source[src],weights[i_e2f_lex])
|
|
|
|
elif flags['normalize_s_given_t'] == 't':
|
|
|
|
# set weight to 0 for all models where target phrase is unseen (p(s|t)
|
|
new_weights[i_e2f] = map(mul,interface.phrase_target[target],weights[i_e2f])
|
|
if flags['normalize-lexical_weights']:
|
|
new_weights[i_e2f_lex] = map(mul,interface.phrase_target[target],weights[i_e2f_lex])
|
|
|
|
# set weight to 0 for all models where source phrase is unseen (p(t|s)
|
|
new_weights[i_f2e] = map(mul,interface.phrase_source[src],weights[i_f2e])
|
|
if flags['normalize-lexical_weights']:
|
|
new_weights[i_f2e_lex] = map(mul,interface.phrase_source[src],weights[i_f2e_lex])
|
|
|
|
|
|
return normalize_weights(new_weights,mode,flags)
|
|
|
|
|
|
def score_interpolate(weights,src,target,interface,flags,cache=False):
|
|
"""linear interpolation of probabilites (and other feature values)
|
|
if normalized is True, the probability mass for p(x|y) is redistributed to models with p(y) > 0
|
|
"""
|
|
|
|
model_values = interface.phrase_pairs[src][target][0]
|
|
|
|
scores = [0]*len(model_values)
|
|
|
|
if 'normalized' in flags and flags['normalized']:
|
|
normalized_weights = redistribute_probability_mass(weights,src,target,interface,flags)
|
|
else:
|
|
normalized_weights = weights
|
|
|
|
if 'recompute_lexweights' in flags and flags['recompute_lexweights']:
|
|
e2f_alignment,f2e_alignment = interface.get_word_alignments(src,target,cache=cache)
|
|
|
|
if not e2f_alignment or not f2e_alignment:
|
|
sys.stderr.write('Error: no word alignments found, but necessary for lexical weight computation.\n')
|
|
lst = 0
|
|
lts = 0
|
|
|
|
else:
|
|
scores[flags['i_e2f_lex']] = compute_lexicalweight(normalized_weights[flags['i_e2f_lex']],e2f_alignment,interface.word_pairs_e2f,None,mode='interpolate')
|
|
scores[flags['i_f2e_lex']] = compute_lexicalweight(normalized_weights[flags['i_f2e_lex']],f2e_alignment,interface.word_pairs_f2e,None,mode='interpolate')
|
|
|
|
|
|
for idx,prob in enumerate(model_values):
|
|
if not ('recompute_lexweights' in flags and flags['recompute_lexweights'] and (idx == flags['i_e2f_lex'] or idx == flags['i_f2e_lex'])):
|
|
scores[idx] = dot_product(prob,normalized_weights[idx])
|
|
|
|
return scores
|
|
|
|
|
|
def score_loglinear(weights,src,target,interface,flags,cache=False):
|
|
"""loglinear interpolation of probabilites
|
|
warning: if phrase pair does not occur in all models, resulting probability is 0
|
|
this is usually not what you want - loglinear scoring is only included for completeness' sake
|
|
"""
|
|
|
|
scores = []
|
|
model_values = interface.phrase_pairs[src][target][0]
|
|
|
|
for idx,prob in enumerate(model_values):
|
|
try:
|
|
scores.append(exp(dot_product(map(log,prob),weights[idx])))
|
|
except ValueError:
|
|
scores.append(0)
|
|
|
|
return scores
|
|
|
|
|
|
def score_counts(weights,src,target,interface,flags,cache=False):
|
|
"""count-based re-estimation of probabilites and lexical weights
|
|
each count is multiplied by its weight; trivial case is weight 1 for each model, which corresponds to a concatentation
|
|
"""
|
|
|
|
i_e2f = flags['i_e2f']
|
|
i_e2f_lex = flags['i_e2f_lex']
|
|
i_f2e = flags['i_f2e']
|
|
i_f2e_lex = flags['i_f2e_lex']
|
|
|
|
# if we have non-default number of weights, assume that we might have to do a mix of count-based and interpolated scores.
|
|
if len(weights) == 4:
|
|
scores = [0]*len(weights)
|
|
else:
|
|
scores = score_interpolate(weights,src,target,interface,flags,cache=cache)
|
|
|
|
try:
|
|
joined_count = dot_product(interface.phrase_pairs[src][target][0][i_e2f],weights[i_e2f])
|
|
target_count = dot_product(interface.phrase_target[target],weights[i_e2f])
|
|
scores[i_e2f] = joined_count / target_count
|
|
except ZeroDivisionError:
|
|
scores[i_e2f] = 0
|
|
|
|
try:
|
|
joined_count = dot_product(interface.phrase_pairs[src][target][0][i_f2e],weights[i_f2e])
|
|
source_count = dot_product(interface.phrase_source[src],weights[i_f2e])
|
|
scores[i_f2e] = joined_count / source_count
|
|
except ZeroDivisionError:
|
|
scores[i_f2e] = 0
|
|
|
|
e2f_alignment,f2e_alignment = interface.get_word_alignments(src,target,cache=cache)
|
|
|
|
if not e2f_alignment or not f2e_alignment:
|
|
sys.stderr.write('Error: no word alignments found, but necessary for lexical weight computation.\n')
|
|
scores[i_e2f_lex] = 0
|
|
scores[i_f2e_lex] = 0
|
|
|
|
else:
|
|
scores[i_e2f_lex] = compute_lexicalweight(weights[i_e2f_lex],e2f_alignment,interface.word_pairs_e2f,interface.word_target,mode='counts',cache=cache)
|
|
scores[i_f2e_lex] = compute_lexicalweight(weights[i_f2e_lex],f2e_alignment,interface.word_pairs_f2e,interface.word_source,mode='counts',cache=cache)
|
|
|
|
return scores
|
|
|
|
|
|
def score_interpolate_reordering(weights,src,target,interface):
|
|
"""linear interpolation of reordering model probabilities
|
|
also normalizes model so that
|
|
"""
|
|
|
|
model_values = interface.reordering_pairs[src][target]
|
|
|
|
scores = [0]*len(model_values)
|
|
|
|
for idx,prob in enumerate(model_values):
|
|
scores[idx] = dot_product(prob,weights[idx])
|
|
|
|
#normalizes first half and last half probabilities (so that each half sums to one).
|
|
#only makes sense for bidirectional configuration in Moses. Remove/change this if you want a different (or no) normalization
|
|
scores = normalize_weights(scores[:int(interface.number_of_features/2)],'interpolate') + normalize_weights(scores[int(interface.number_of_features/2):],'interpolate')
|
|
|
|
return scores
|
|
|
|
|
|
def compute_lexicalweight(weights,alignment,word_pairs,marginal,mode='counts',cache=False,mycache=[0,defaultdict(dict)]):
|
|
"""compute the lexical weights as implemented in Moses toolkit"""
|
|
|
|
lex = 1
|
|
|
|
# new weights: empty cache
|
|
if cache and mycache[0] != weights:
|
|
mycache[0] = weights
|
|
mycache[1] = defaultdict(dict)
|
|
|
|
for x,translations in alignment:
|
|
|
|
if cache and translations in mycache[1][x]:
|
|
lex_step = mycache[1][x][translations]
|
|
|
|
else:
|
|
lex_step = 0
|
|
for y in translations:
|
|
|
|
if mode == 'counts':
|
|
lex_step += dot_product(word_pairs[x][y],weights) / dot_product(marginal[y],weights)
|
|
elif mode == 'interpolate':
|
|
lex_step += dot_product(word_pairs[x][y],weights)
|
|
|
|
lex_step /= len(translations)
|
|
|
|
if cache:
|
|
mycache[1][x][translations] = lex_step
|
|
|
|
lex *= lex_step
|
|
|
|
return lex
|
|
|
|
|
|
def normalize_weights(weights,mode,flags=None):
|
|
"""make sure that probability mass in linear interpolation is 1
|
|
for weighted counts, weight of first model is set to 1
|
|
"""
|
|
|
|
if mode == 'interpolate' or mode == 'loglinear':
|
|
|
|
if type(weights[0]) == list:
|
|
|
|
new_weights = []
|
|
|
|
for weight_list in weights:
|
|
total = sum(weight_list)
|
|
|
|
try:
|
|
weight_list = [weight/total for weight in weight_list]
|
|
except ZeroDivisionError:
|
|
sys.stderr.write('Error: Zero division in weight normalization. Are some of your weights zero? This might lead to undefined behaviour if a phrase pair is only seen in model with weight 0\n')
|
|
|
|
new_weights.append(weight_list)
|
|
|
|
else:
|
|
total = sum(weights)
|
|
|
|
try:
|
|
new_weights = [weight/total for weight in weights]
|
|
except ZeroDivisionError:
|
|
sys.stderr.write('Error: Zero division in weight normalization. Are some of your weights zero? This might lead to undefined behaviour if a phrase pair is only seen in model with weight 0\n')
|
|
|
|
elif mode == 'counts_pure':
|
|
|
|
if type(weights[0]) == list:
|
|
|
|
new_weights = []
|
|
|
|
for weight_list in weights:
|
|
ratio = 1/weight_list[0]
|
|
new_weights.append([weight * ratio for weight in weight_list])
|
|
|
|
else:
|
|
ratio = 1/weights[0]
|
|
new_weights = [weight * ratio for weight in weights]
|
|
|
|
# make sure that features other than the standard Moses features are always interpolated (since no count-based computation is defined)
|
|
elif mode == 'counts':
|
|
|
|
if type(weights[0]) == list:
|
|
norm_counts = normalize_weights(weights,'counts_pure')
|
|
new_weights = normalize_weights(weights,'interpolate')
|
|
for i in [flags['i_e2f'],flags['i_e2f_lex'],flags['i_f2e'],flags['i_f2e_lex']]:
|
|
new_weights[i] = norm_counts[i]
|
|
return new_weights
|
|
|
|
else:
|
|
return normalize_weights(weights,'counts_pure')
|
|
|
|
return new_weights
|
|
|
|
|
|
def handle_file(filename,action,fileobj=None,mode='r'):
|
|
"""support reading/writing either from/to file, stdout or gzipped file"""
|
|
|
|
if action == 'open':
|
|
|
|
if mode == 'r':
|
|
mode = 'rb'
|
|
|
|
if mode == 'rb' and not filename == '-' and not os.path.exists(filename):
|
|
if os.path.exists(filename+'.gz'):
|
|
filename = filename+'.gz'
|
|
else:
|
|
sys.stderr.write('Error: unable to open file. ' + filename + ' - aborting.\n')
|
|
|
|
if 'counts' in filename and os.path.exists(os.path.dirname(filename)):
|
|
sys.stderr.write('For a weighted counts combination, we need statistics that Moses doesn\'t write to disk by default.\n')
|
|
sys.stderr.write('Repeat step 4 of Moses training for all models with the option -write-lexical-counts.\n')
|
|
|
|
exit()
|
|
|
|
if filename.endswith('.gz'):
|
|
fileobj = gzip.open(filename,mode)
|
|
|
|
elif filename == '-' and mode == 'w':
|
|
fileobj = sys.stdout
|
|
|
|
else:
|
|
fileobj = open(filename,mode)
|
|
|
|
return fileobj
|
|
|
|
elif action == 'close' and filename != '-':
|
|
fileobj.close()
|
|
|
|
|
|
def sort_file(filename,tempdir=None):
|
|
"""Sort a file and return temporary file"""
|
|
|
|
cmd = ['sort', filename]
|
|
env = {}
|
|
env['LC_ALL'] = 'C'
|
|
if tempdir:
|
|
cmd.extend(['-T',tempdir])
|
|
|
|
outfile = NamedTemporaryFile(delete=False,dir=tempdir)
|
|
sys.stderr.write('LC_ALL=C ' + ' '.join(cmd) + ' > ' + outfile.name + '\n')
|
|
p = Popen(cmd,env=env,stdout=outfile.file)
|
|
p.wait()
|
|
|
|
outfile.seek(0)
|
|
|
|
return outfile
|
|
|
|
|
|
class Combine_TMs():
|
|
|
|
"""This class handles the various options, checks them for sanity and has methods that define what models to load and what functions to call for the different tasks.
|
|
Typically, you only need to interact with this class and its attributes.
|
|
|
|
"""
|
|
|
|
#some flags that change the behaviour during scoring. See init docstring for more info
|
|
flags = {'normalized':False,
|
|
'recompute_lexweights':False,
|
|
'intersected_cross-entropies':False,
|
|
'normalize_s_given_t':None,
|
|
'normalize-lexical_weights':True,
|
|
'add_origin_features':False,
|
|
'write_phrase_penalty':False,
|
|
'lowmem': False,
|
|
'i_e2f':0,
|
|
'i_e2f_lex':1,
|
|
'i_f2e':2,
|
|
'i_f2e_lex':3
|
|
}
|
|
|
|
# each model needs a priority. See init docstring for more info
|
|
_priorities = {'primary':1,
|
|
'map':2,
|
|
'supplementary':10}
|
|
|
|
def __init__(self,models,weights=None,
|
|
output_file=None,
|
|
mode='interpolate',
|
|
number_of_features=4,
|
|
model_interface=Moses,
|
|
reference_interface=Moses_Alignment,
|
|
reference_file=None,
|
|
lang_src=None,
|
|
lang_target=None,
|
|
output_lexical=None,
|
|
**flags):
|
|
"""The whole configuration of the task is done during intialization. Afterwards, you only need to call your intended method(s).
|
|
You can change some of the class attributes afterwards (such as the weights, or the output file), but you should never change the models or mode after initialization.
|
|
See unit_test function for example configurations
|
|
|
|
models: list of tuples (path,priority) that defines which models to process. Path is usually the top directory of a Moses model. There are three priorities:
|
|
'primary': phrase pairs with this priority will always be included in output model. For most purposes, you'll want to define all models as primary.
|
|
'map': for maximum a-posteriori combination (Bacchiani et al. 2004; Foster et al. 2010). for use with mode 'counts'. stores c(t) = 1 and c(s,t) = p(s|t)
|
|
'supplementary': phrase pairs are considered for probability computation, but not included in output model (unless they also occur in at least one primary model)
|
|
useful for rescoring a model without changing its vocabulary.
|
|
|
|
weights: accept two types of weight declarations: one weight per model, and one weight per model and feature
|
|
type one is internally converted to type two. For 2 models with four features, this looks like: [0.1,0.9] -> [[0.1,0.9],[0.1,0.9],[0.1,0.9],[0.1,0.9]]
|
|
default: uniform weights (None)
|
|
|
|
output_file: filepath of output phrase table. If it ends with .gz, file is automatically zipped.
|
|
|
|
output_lexical: If defined, also writes combined lexical tables. Writes to output_lexical.e2f and output_lexical.f2e, or output_lexical.counts.e2f in mode 'counts'.
|
|
|
|
mode: declares the basic mixture-model algorithm. there are currently three options:
|
|
'counts': weighted counts (requires some statistics that Moses doesn't produce. Repeat step 4 of Moses training with the option -write-lexical-counts to obtain them.)
|
|
Only the standard Moses features are recomputed from weighted counts; additional features are linearly interpolated
|
|
(see number_of_features to allow more features, and i_e2f etc. if the standard features are in a non-standard position)
|
|
'interpolate': linear interpolation
|
|
'loglinear': loglinear interpolation (careful: this creates the intersection of phrase tables and is often of little use)
|
|
|
|
number_of_features: could be used to interpolate models with non-default Moses features. 4 features is currently still hardcoded in various places
|
|
(e.g. cross_entropy calculations, mode 'counts')
|
|
|
|
i_e2f,i_e2f_lex,i_f2e,i_f2e_lex: Index of the (Moses) phrase table features p(s|t), lex(s|t), p(t|s) and lex(t|s).
|
|
Relevant for mode 'counts', and if 'recompute_lexweights' is True in mode 'interpolate'. In mode 'counts', any additional features are combined through linear interpolation.
|
|
|
|
model_interface: class that handles reading phrase tables and lexical tables, and writing phrase tables. Currently only Moses is implemented.
|
|
default: Moses
|
|
|
|
reference_interace: class that deals with reading in reference phrase pairs for cross-entropy computation
|
|
Moses_Alignment: Word/phrase pairs as computed by Giza++ and extracted through Moses heuristics. This corresponds to the file model/extract.gz if you train a Moses model on your tuning set.
|
|
TigerXML: TigerXML data format
|
|
|
|
default: Moses_Alignment
|
|
|
|
reference_file: path to reference file. Required for every operation except combination of models with given weights.
|
|
|
|
lang_src: source language. Only required if reference_interface is TigerXML. Identifies which language in XML file we should treat as source language.
|
|
|
|
lang_target: target language. Only required if reference_interface is TigerXML. Identifies which language in XML file we should treat as target language.
|
|
|
|
intersected_cross-entropies: compute cross-entropies of intersection of phrase pairs, ignoring phrase pairs that do not occur in all models.
|
|
If False, algorithm operates on union of phrase pairs
|
|
default: False
|
|
|
|
add_origin_features: For each model that is being combined, add a binary feature to the final phrase table, with values of 1 (phrase pair doesn't occur in model) and 2.718 (it does).
|
|
This indicates which model(s) a phrase pair comes from and can be used during MERT to additionally reward/penalize translation models
|
|
|
|
lowmem: low memory mode: instead of loading target phrase counts / probability (when required), process the original table and its inversion (source and target swapped) incrementally, then merge the two halves.
|
|
|
|
tempdir: temporary directory (for low memory mode).
|
|
|
|
there are a number of further configuration options that you can define, which modify the algorithm for linear interpolation. They have no effect in mode 'counts'
|
|
|
|
recompute_lexweights: don't directly interpolate lexical weights, but interpolate word translation probabilities instead and recompute the lexical weights.
|
|
default: False
|
|
|
|
normalized: for interpolation of p(x|y): if True, models with p(y)=0 will be ignored, and probability mass will be distributed among models with p(y)>0.
|
|
If False, missing entries (x,y) are always interpreted as p(x|y)=0.
|
|
default: False
|
|
|
|
normalize_s_given_t: How to we normalize p(s|t) if 'normalized' is True? Three options:
|
|
None: don't normalize p(s|t) and lex(s|t) (only p(t|s) and lex(t|s))
|
|
t: check if p(t)==0 : advantage: theoretically sound; disadvantage: slower (we need to know if t occcurs in model); favours rare target phrases (relative to default choice)
|
|
s: check if p(s)==0 : advantage: relevant for task; disadvantage: no true probability distributions
|
|
|
|
default: None
|
|
|
|
normalize-lexical_weights: also normalize lex(s|t) and lex(t|s) if 'normalized' ist True:
|
|
reason why you might want to disable this: lexical weights suffer less from data sparseness than probabilities.
|
|
default: True
|
|
|
|
"""
|
|
|
|
|
|
self.mode = mode
|
|
self.output_file = output_file
|
|
self.lang_src = lang_src
|
|
self.lang_target = lang_target
|
|
self.loaded = defaultdict(int)
|
|
self.output_lexical = output_lexical
|
|
|
|
self.flags = copy.copy(self.flags)
|
|
self.flags.update(flags)
|
|
|
|
self.flags['i_e2f'] = int(self.flags['i_e2f'])
|
|
self.flags['i_e2f_lex'] = int(self.flags['i_e2f_lex'])
|
|
self.flags['i_f2e'] = int(self.flags['i_f2e'])
|
|
self.flags['i_f2e_lex'] = int(self.flags['i_f2e_lex'])
|
|
|
|
if reference_interface:
|
|
self.reference_interface = reference_interface(reference_file)
|
|
|
|
if mode not in ['interpolate','loglinear','counts']:
|
|
sys.stderr.write('Error: mode must be either "interpolate", "loglinear" or "counts"\n')
|
|
sys.exit()
|
|
|
|
models,number_of_features,weights = self._sanity_checks(models,number_of_features,weights)
|
|
|
|
self.weights = weights
|
|
self.models = models
|
|
|
|
self.model_interface = model_interface(models,number_of_features)
|
|
|
|
if mode == 'interpolate':
|
|
self.score = score_interpolate
|
|
elif mode == 'loglinear':
|
|
self.score = score_loglinear
|
|
elif mode == 'counts':
|
|
self.score = score_counts
|
|
|
|
|
|
def _sanity_checks(self,models,number_of_features,weights):
|
|
"""check if input arguments make sense (correct number of weights, valid model priorities etc.)
|
|
is only called on initialization. If you change weights afterwards, better know what you're doing.
|
|
"""
|
|
|
|
number_of_features = int(number_of_features)
|
|
|
|
for (model,priority) in models:
|
|
assert(priority in self._priorities)
|
|
models = [(model,self._priorities[p]) for (model,p) in models]
|
|
|
|
|
|
# accept two types of weight declarations: one weight per model, and one weight per model and feature
|
|
# type one is internally converted to type two: [0.1,0.9] -> [[0.1,0.9],[0.1,0.9],[0.1,0.9],[0.1,0.9]]
|
|
if weights:
|
|
if type(weights[0]) == list:
|
|
assert(len(weights)==number_of_features)
|
|
for sublist in weights:
|
|
assert(len(sublist)==len(models))
|
|
|
|
else:
|
|
assert(len(models) == len(weights))
|
|
weights = [weights for i in range(number_of_features)]
|
|
|
|
else:
|
|
if self.mode == 'loglinear' or self.mode == 'interpolate':
|
|
weights = [[1/len(models)]*len(models) for i in range(number_of_features)]
|
|
elif self.mode == 'counts':
|
|
weights = [[1]*len(models) for i in range(number_of_features)]
|
|
sys.stderr.write('Warning: No weights defined: initializing with uniform weights\n')
|
|
|
|
|
|
new_weights = normalize_weights(weights,self.mode,self.flags)
|
|
if weights != new_weights:
|
|
if self.mode == 'interpolate' or self.mode == 'loglinear':
|
|
sys.stderr.write('Warning: weights should sum to 1 - ')
|
|
elif self.mode == 'counts':
|
|
sys.stderr.write('Warning: normalizing weights so that first model has weight 1 (for features that are recomputed from counts) - ')
|
|
sys.stderr.write('normalizing to: '+ str(new_weights) +'\n')
|
|
weights = new_weights
|
|
|
|
return models,number_of_features,weights
|
|
|
|
|
|
def _ensure_loaded(self,data):
|
|
"""load data (lexical tables; reference alignment; phrase table), if it isn't already in memory"""
|
|
|
|
if 'lexical' in data:
|
|
self.model_interface.require_alignment = True
|
|
|
|
if 'reference' in data and not self.loaded['reference']:
|
|
|
|
sys.stderr.write('Loading word pairs from reference set...')
|
|
self.reference_interface.load_word_pairs(self.lang_src,self.lang_target)
|
|
sys.stderr.write('done\n')
|
|
self.loaded['reference'] = 1
|
|
|
|
if 'lexical' in data and not self.loaded['lexical']:
|
|
|
|
sys.stderr.write('Loading lexical tables...')
|
|
self.model_interface.load_lexical_tables(self.models,self.mode)
|
|
sys.stderr.write('done\n')
|
|
self.loaded['lexical'] = 1
|
|
|
|
if 'pt-filtered' in data and not self.loaded['pt-filtered']:
|
|
|
|
models_prioritized = [(self.model_interface.open_table(model,'phrase-table'),priority,i) for (model,priority,i) in priority_sort_models(self.models)]
|
|
|
|
for model,priority,i in models_prioritized:
|
|
sys.stderr.write('Loading phrase table ' + str(i) + ' (only data relevant for reference set)')
|
|
j = 0
|
|
for line in model:
|
|
if not j % 1000000:
|
|
sys.stderr.write('...'+str(j))
|
|
j += 1
|
|
line = line.rstrip().split(b' ||| ')
|
|
self.model_interface.load_phrase_features(line,priority,i,store='all',mode=self.mode,filter_by=self.reference_interface.word_pairs,filter_by_src=self.reference_interface.word_source,filter_by_target=self.reference_interface.word_target,flags=self.flags)
|
|
sys.stderr.write(' done\n')
|
|
|
|
self.loaded['pt-filtered'] = 1
|
|
|
|
if 'lexical-filtered' in data and not self.loaded['lexical-filtered']:
|
|
e2f_filter, f2e_filter = _get_lexical_filter(self.reference_interface,self.model_interface)
|
|
|
|
sys.stderr.write('Loading lexical tables (only data relevant for reference set)...')
|
|
self.model_interface.load_lexical_tables(self.models,self.mode,e2f_filter=e2f_filter,f2e_filter=f2e_filter)
|
|
sys.stderr.write('done\n')
|
|
self.loaded['lexical-filtered'] = 1
|
|
|
|
if 'pt-target' in data and not self.loaded['pt-target']:
|
|
|
|
models_prioritized = [(self.model_interface.open_table(model,'phrase-table'),priority,i) for (model,priority,i) in priority_sort_models(self.models)]
|
|
|
|
for model,priority,i in models_prioritized:
|
|
sys.stderr.write('Loading target information from phrase table ' + str(i))
|
|
j = 0
|
|
for line in model:
|
|
if not j % 1000000:
|
|
sys.stderr.write('...'+str(j))
|
|
j += 1
|
|
line = line.rstrip().split(b' ||| ')
|
|
self.model_interface.load_phrase_features(line,priority,i,mode=self.mode,store='target',flags=self.flags)
|
|
sys.stderr.write(' done\n')
|
|
|
|
self.loaded['pt-target'] = 1
|
|
|
|
|
|
def _inverse_wrapper(self,weights,tempdir=None):
|
|
"""if we want to invert the phrase table to better calcualte p(s|t) and lex(s|t), manage creation, sorting and merging of inverted phrase tables"""
|
|
|
|
sys.stderr.write('Processing first table half\n')
|
|
models = [(self.model_interface.open_table(model,'phrase-table'),priority,i) for (model,priority,i) in priority_sort_models(self.model_interface.models)]
|
|
pt_half1 = NamedTemporaryFile(prefix='half1',delete=False,dir=tempdir)
|
|
self._write_phrasetable(models,pt_half1,weights)
|
|
pt_half1.seek(0)
|
|
|
|
sys.stderr.write('Inverting tables\n')
|
|
models = [(self.model_interface.create_inverse(self.model_interface.open_table(model,'phrase-table'),tempdir=tempdir),priority,i) for (model,priority,i) in priority_sort_models(self.model_interface.models)]
|
|
sys.stderr.write('Processing second table half\n')
|
|
pt_half2_inverted = NamedTemporaryFile(prefix='half2',delete=False,dir=tempdir)
|
|
self._write_phrasetable(models,pt_half2_inverted,weights,inverted=True)
|
|
pt_half2_inverted.close()
|
|
for model,priority,i in models:
|
|
model.close()
|
|
os.remove(model.name)
|
|
pt_half2 = sort_file(pt_half2_inverted.name,tempdir=tempdir)
|
|
os.remove(pt_half2_inverted.name)
|
|
|
|
sys.stderr.write('Merging tables: first half: {0} ; second half: {1} ; final table: {2}\n'.format(pt_half1.name,pt_half2.name,self.output_file))
|
|
output_object = handle_file(self.output_file,'open',mode='w')
|
|
self.model_interface.merge(pt_half1,pt_half2,output_object,self.mode)
|
|
os.remove(pt_half1.name)
|
|
os.remove(pt_half2.name)
|
|
|
|
handle_file(self.output_file,'close',output_object,mode='w')
|
|
|
|
|
|
def _write_phrasetable(self,models,output_object,weights,inverted=False):
|
|
"""Incrementally load phrase tables, calculate score for increment and write it to output_object"""
|
|
|
|
# define which information we need to store from the phrase table
|
|
# possible flags: 'all', 'target', 'source' and 'pairs'
|
|
# interpolated models without re-normalization only need 'pairs', otherwise 'all' is the correct choice
|
|
store_flag = 'all'
|
|
if self.mode == 'interpolate' and not self.flags['normalized']:
|
|
store_flag = 'pairs'
|
|
|
|
i = 0
|
|
sys.stderr.write('Incrementally loading and processing phrase tables...')
|
|
|
|
for block in self.model_interface.traverse_incrementally('phrase-table',models,self.model_interface.load_phrase_features,store_flag,mode=self.mode,inverted=inverted,lowmem=self.flags['lowmem'],flags=self.flags):
|
|
for src in sorted(self.model_interface.phrase_pairs, key = lambda x: x + b' |'):
|
|
for target in sorted(self.model_interface.phrase_pairs[src], key = lambda x: x + b' |'):
|
|
|
|
if not i % 1000000:
|
|
sys.stderr.write(str(i) + '...')
|
|
i += 1
|
|
|
|
features = self.score(weights,src,target,self.model_interface,self.flags)
|
|
outline = self.model_interface.write_phrase_table(src,target,weights,features,self.mode, self.flags)
|
|
output_object.write(outline)
|
|
sys.stderr.write('done\n')
|
|
|
|
|
|
def combine_given_weights(self,weights=None):
|
|
"""write a new phrase table, based on existing weights"""
|
|
|
|
if not weights:
|
|
weights = self.weights
|
|
|
|
data = []
|
|
|
|
if self.mode == 'counts':
|
|
data.append('lexical')
|
|
if not self.flags['lowmem']:
|
|
data.append('pt-target')
|
|
|
|
elif self.mode == 'interpolate':
|
|
if self.flags['recompute_lexweights']:
|
|
data.append('lexical')
|
|
if self.flags['normalized'] and self.flags['normalize_s_given_t'] == 't' and not self.flags['lowmem']:
|
|
data.append('pt-target')
|
|
|
|
self._ensure_loaded(data)
|
|
|
|
if self.flags['lowmem'] and (self.mode == 'counts' or self.flags['normalized'] and self.flags['normalize_s_given_t'] == 't'):
|
|
self._inverse_wrapper(weights,tempdir=self.flags['tempdir'])
|
|
else:
|
|
models = [(self.model_interface.open_table(model,'phrase-table'),priority,i) for (model,priority,i) in priority_sort_models(self.model_interface.models)]
|
|
output_object = handle_file(self.output_file,'open',mode='w')
|
|
self._write_phrasetable(models,output_object,weights)
|
|
handle_file(self.output_file,'close',output_object,mode='w')
|
|
|
|
if self.output_lexical:
|
|
sys.stderr.write('Writing lexical tables\n')
|
|
self._ensure_loaded(['lexical'])
|
|
self.model_interface.write_lexical_file('e2f',self.output_lexical,weights[1],self.mode)
|
|
self.model_interface.write_lexical_file('f2e',self.output_lexical,weights[3],self.mode)
|
|
|
|
|
|
def combine_given_tuning_set(self):
|
|
"""write a new phrase table, using the weights that minimize cross-entropy on a tuning set"""
|
|
|
|
data = ['reference','pt-filtered']
|
|
|
|
if self.mode == 'counts' or (self.mode == 'interpolate' and self.flags['recompute_lexweights']):
|
|
data.append('lexical-filtered')
|
|
|
|
self._ensure_loaded(data)
|
|
|
|
best_weights,best_cross_entropy = optimize_cross_entropy(self.model_interface,self.reference_interface,self.weights,self.score,self.mode,self.flags)
|
|
sys.stderr.write('Best weights: ' + str(best_weights) + '\n')
|
|
sys.stderr.write('Cross entropies: ' + str(best_cross_entropy) + '\n')
|
|
sys.stderr.write('Executing action combine_given_weights with -w "{0}"\n'.format('; '.join([', '.join(str(w) for w in item) for item in best_weights])))
|
|
|
|
self.loaded['pt-filtered'] = False # phrase table will be overwritten
|
|
self.combine_given_weights(weights=best_weights)
|
|
|
|
|
|
|
|
def combine_reordering_tables(self,weights=None):
|
|
"""write a new reordering table, based on existing weights."""
|
|
|
|
if not weights:
|
|
weights = self.weights
|
|
|
|
data = []
|
|
|
|
if self.mode != 'interpolate':
|
|
sys.stderr.write('Error: only linear interpolation is supported for reordering model combination')
|
|
|
|
output_object = handle_file(self.output_file,'open',mode='w')
|
|
models = [(self.model_interface.open_table(model,'reordering-table'),priority,i) for (model,priority,i) in priority_sort_models(self.models)]
|
|
|
|
i = 0
|
|
|
|
sys.stderr.write('Incrementally loading and processing phrase tables...')
|
|
|
|
for block in self.model_interface.traverse_incrementally('reordering-table',models,self.model_interface.load_reordering_probabilities,'pairs',mode=self.mode,lowmem=self.flags['lowmem'],flags=self.flags):
|
|
for src in sorted(self.model_interface.reordering_pairs):
|
|
for target in sorted(self.model_interface.reordering_pairs[src]):
|
|
if not i % 1000000:
|
|
sys.stderr.write(str(i) + '...')
|
|
i += 1
|
|
|
|
features = score_interpolate_reordering(weights,src,target,self.model_interface)
|
|
outline = self.model_interface.write_reordering_table(src,target,features)
|
|
output_object.write(outline)
|
|
sys.stderr.write('done\n')
|
|
|
|
|
|
handle_file(self.output_file,'close',output_object,mode='w')
|
|
|
|
|
|
def compare_cross_entropies(self):
|
|
"""print cross-entropies for each model/feature, using the intersection of phrase pairs.
|
|
analysis tool.
|
|
"""
|
|
|
|
self.flags['compare_cross-entropies'] = True
|
|
|
|
data = ['reference','pt-filtered']
|
|
|
|
if self.mode == 'counts' or (self.mode == 'interpolate' and self.flags['recompute_lexweights']):
|
|
data.append('lexical-filtered')
|
|
|
|
self._ensure_loaded(data)
|
|
|
|
results, (intersection,total_pairs,oov2) = cross_entropy(self.model_interface,self.reference_interface,self.weights,self.score,self.mode,self.flags)
|
|
|
|
padding = 90
|
|
num_features = self.model_interface.number_of_features
|
|
|
|
print('\nResults of model comparison\n')
|
|
print('{0:<{padding}}: {1}'.format('phrase pairs in reference (tokens)',total_pairs, padding=padding))
|
|
print('{0:<{padding}}: {1}'.format('phrase pairs in model intersection (tokens)',intersection, padding=padding))
|
|
print('{0:<{padding}}: {1}\n'.format('phrase pairs in model union (tokens)',total_pairs-oov2, padding=padding))
|
|
|
|
for i,data in enumerate(results):
|
|
|
|
cross_entropies = data[:num_features]
|
|
(other_translations,oov,ignored,n,total_pairs) = data[num_features:]
|
|
|
|
print('model ' +str(i))
|
|
for j in range(num_features):
|
|
print('{0:<{padding}}: {1}'.format('cross-entropy for feature {0}'.format(j), cross_entropies[j], padding=padding))
|
|
print('{0:<{padding}}: {1}'.format('phrase pairs in model (tokens)', n+ignored, padding=padding))
|
|
print('{0:<{padding}}: {1}'.format('phrase pairs in model, but not in intersection (tokens)', ignored, padding=padding))
|
|
print('{0:<{padding}}: {1}'.format('phrase pairs in union, but not in model (but source phrase is) (tokens)', other_translations, padding=padding))
|
|
print('{0:<{padding}}: {1}\n'.format('phrase pairs in union, but source phrase not in model (tokens)', oov, padding=padding))
|
|
|
|
self.flags['compare_cross-entropies'] = False
|
|
|
|
return results, (intersection,total_pairs,oov2)
|
|
|
|
|
|
def compute_cross_entropy(self):
|
|
"""return cross-entropy for a tuning set, a set of models and a set of weights.
|
|
analysis tool.
|
|
"""
|
|
|
|
data = ['reference','pt-filtered']
|
|
|
|
if self.mode == 'counts' or (self.mode == 'interpolate' and self.flags['recompute_lexweights']):
|
|
data.append('lexical-filtered')
|
|
|
|
self._ensure_loaded(data)
|
|
|
|
current_cross_entropy = cross_entropy(self.model_interface,self.reference_interface,self.weights,self.score,self.mode,self.flags)
|
|
sys.stderr.write('Cross entropy: ' + str(current_cross_entropy) + '\n')
|
|
return current_cross_entropy
|
|
|
|
|
|
def return_best_cross_entropy(self):
|
|
"""return the set of weights and cross-entropy that is optimal for a tuning set and a set of models."""
|
|
|
|
data = ['reference','pt-filtered']
|
|
|
|
if self.mode == 'counts' or (self.mode == 'interpolate' and self.flags['recompute_lexweights']):
|
|
data.append('lexical-filtered')
|
|
|
|
self._ensure_loaded(data)
|
|
|
|
best_weights,best_cross_entropy = optimize_cross_entropy(self.model_interface,self.reference_interface,self.weights,self.score,self.mode,self.flags)
|
|
|
|
sys.stderr.write('Best weights: ' + str(best_weights) + '\n')
|
|
sys.stderr.write('Cross entropies: ' + str(best_cross_entropy) + '\n')
|
|
sys.stderr.write('You can apply these weights with the action combine_given_weights and the option -w "{0}"\n'.format('; '.join([', '.join(str(w) for w in item) for item in best_weights])))
|
|
return best_weights,best_cross_entropy
|
|
|
|
|
|
def test():
|
|
"""test (and illustrate) the functionality of the program based on two test phrase tables and a small reference set,"""
|
|
|
|
# linear interpolation of two models, with fixed weights. Output uses vocabulary of model1 (since model2 is supplementary)
|
|
# command line: (currently not possible to define supplementary models through command line)
|
|
sys.stderr.write('Regression test 1\n')
|
|
Combiner = Combine_TMs([[os.path.join('test','model1'),'primary'],[os.path.join('test','model2'),'supplementary']],[0.5,0.5],os.path.join('test','phrase-table_test1'))
|
|
Combiner.combine_given_weights()
|
|
|
|
# linear interpolation of two models, with fixed weights (but different for each feature).
|
|
# command line: python tmcombine.py combine_given_weights test/model1 test/model2 -w "0.1,0.9;0.1,1;0.2,0.8;0.5,0.5" -o test/phrase-table_test2
|
|
sys.stderr.write('Regression test 2\n')
|
|
Combiner = Combine_TMs([[os.path.join('test','model1'),'primary'],[os.path.join('test','model2'),'primary']],[[0.1,0.9],[0.1,1],[0.2,0.8],[0.5,0.5]],os.path.join('test','phrase-table_test2'))
|
|
Combiner.combine_given_weights()
|
|
|
|
# count-based combination of two models, with fixed weights
|
|
# command line: python tmcombine.py combine_given_weights test/model1 test/model2 -w "0.1,0.9;0.1,1;0.2,0.8;0.5,0.5" -o test/phrase-table_test3 -m counts
|
|
sys.stderr.write('Regression test 3\n')
|
|
Combiner = Combine_TMs([[os.path.join('test','model1'),'primary'],[os.path.join('test','model2'),'primary']],[[0.1,0.9],[0.1,1],[0.2,0.8],[0.5,0.5]],os.path.join('test','phrase-table_test3'),mode='counts')
|
|
Combiner.combine_given_weights()
|
|
|
|
# output phrase table should be identical to model1
|
|
# command line: python tmcombine.py combine_given_weights test/model1 -w 1 -o test/phrase-table_test4 -m counts
|
|
sys.stderr.write('Regression test 4\n')
|
|
Combiner = Combine_TMs([[os.path.join('test','model1'),'primary']],[1],os.path.join('test','phrase-table_test4'),mode='counts')
|
|
Combiner.combine_given_weights()
|
|
|
|
# count-based combination of two models with weights set through perplexity minimization
|
|
# command line: python tmcombine.py combine_given_tuning_set test/model1 test/model2 -o test/phrase-table_test5 -m counts -r test/extract
|
|
sys.stderr.write('Regression test 5\n')
|
|
Combiner = Combine_TMs([[os.path.join('test','model1'),'primary'],[os.path.join('test','model2'),'primary']],output_file=os.path.join('test','phrase-table_test5'),mode='counts',reference_file='test/extract')
|
|
Combiner.combine_given_tuning_set()
|
|
|
|
# loglinear combination of two models with fixed weights
|
|
# command line: python tmcombine.py combine_given_weights test/model1 test/model2 -w 0.1,0.9 -o test/phrase-table_test6 -m loglinear
|
|
sys.stderr.write('Regression test 6\n')
|
|
Combiner = Combine_TMs([[os.path.join('test','model1'),'primary'],[os.path.join('test','model2'),'primary']],weights=[0.1,0.9],output_file=os.path.join('test','phrase-table_test6'),mode='loglinear')
|
|
Combiner.combine_given_weights()
|
|
|
|
# cross-entropy analysis of two models through a reference set
|
|
# command line: python tmcombine.py compare_cross_entropies test/model1 test/model2 -m counts -r test/extract
|
|
sys.stderr.write('Regression test 7\n')
|
|
Combiner = Combine_TMs([[os.path.join('test','model1'),'primary'],[os.path.join('test','model2'),'primary']],mode='counts',reference_file='test/extract')
|
|
f = open(os.path.join('test','phrase-table_test7'),'w')
|
|
f.write(str(Combiner.compare_cross_entropies()))
|
|
f.close()
|
|
|
|
# maximum a posteriori combination of two models (Bacchiani et al. 2004; Foster et al. 2010) with weights set through cross-entropy minimization
|
|
# command line: (currently not possible through command line)
|
|
sys.stderr.write('Regression test 8\n')
|
|
Combiner = Combine_TMs([[os.path.join('test','model1'),'primary'],[os.path.join('test','model2'),'map']],output_file=os.path.join('test','phrase-table_test8'),mode='counts',reference_file='test/extract')
|
|
Combiner.combine_given_tuning_set()
|
|
|
|
# count-based combination of two non-default models, with fixed weights. Same as test 3, but with the standard features moved back
|
|
# command line: python tmcombine.py combine_given_weights test/model3 test/model4 -w "0.5,0.5;0.5,0.5;0.5,0.5;0.5,0.5;0.1,0.9;0.1,1;0.2,0.8;0.5,0.5" -o test/phrase-table_test9 -m counts --number_of_features 8 --i_e2f 4 --i_e2f_lex 5 --i_f2e 6 --i_f2e_lex 7 -r test/extract
|
|
sys.stderr.write('Regression test 9\n')
|
|
Combiner = Combine_TMs([[os.path.join('test','model3'),'primary'],[os.path.join('test','model4'),'primary']],[[0.5,0.5],[0.5,0.5],[0.5,0.5],[0.5,0.5],[0.1,0.9],[0.1,1],[0.2,0.8],[0.5,0.5]],os.path.join('test','phrase-table_test9'),mode='counts',number_of_features=8,i_e2f=4,i_e2f_lex=5,i_f2e=6,i_f2e_lex=7)
|
|
Combiner.combine_given_weights()
|
|
|
|
# count-based combination of two non-default models, with fixed weights. Same as test 5, but with the standard features moved back
|
|
# command line: python tmcombine.py combine_given_tuning_set test/model3 test/model4 -o test/phrase-table_test10 -m counts --number_of_features 8 --i_e2f 4 --i_e2f_lex 5 --i_f2e 6 --i_f2e_lex 7 -r test/extract
|
|
sys.stderr.write('Regression test 10\n')
|
|
Combiner = Combine_TMs([[os.path.join('test','model3'),'primary'],[os.path.join('test','model4'),'primary']],output_file=os.path.join('test','phrase-table_test10'),mode='counts',number_of_features=8,i_e2f=4,i_e2f_lex=5,i_f2e=6,i_f2e_lex=7,reference_file='test/extract')
|
|
Combiner.combine_given_tuning_set()
|
|
|
|
|
|
#convert weight vector passed as a command line argument
|
|
class to_list(argparse.Action):
|
|
def __call__(self, parser, namespace, weights, option_string=None):
|
|
if ';' in weights:
|
|
values = [[float(x) for x in vector.split(',')] for vector in weights.split(';')]
|
|
else:
|
|
values = [float(x) for x in weights.split(',')]
|
|
setattr(namespace, self.dest, values)
|
|
|
|
|
|
def parse_command_line():
|
|
parser = argparse.ArgumentParser(description='Combine translation models. Check DOCSTRING of the class Combine_TMs() and its methods for a more in-depth documentation and additional configuration options not available through the command line. The function test() shows examples.')
|
|
|
|
group1 = parser.add_argument_group('Main options')
|
|
group2 = parser.add_argument_group('More model combination options')
|
|
|
|
group1.add_argument('action', metavar='ACTION', choices=["combine_given_weights","combine_given_tuning_set","combine_reordering_tables","compute_cross_entropy","return_best_cross_entropy","compare_cross_entropies"],
|
|
help='What you want to do with the models. One of %(choices)s.')
|
|
|
|
group1.add_argument('model', metavar='DIRECTORY', nargs='+',
|
|
help='Model directory. Assumes default Moses structure (i.e. path to phrase table and lexical tables).')
|
|
|
|
group1.add_argument('-w', '--weights', dest='weights', action=to_list,
|
|
default=None,
|
|
help='weight vector. Format 1: single vector, one weight per model. Example: \"0.1,0.9\" ; format 2: one vector per feature, one weight per model: \"0.1,0.9;0.5,0.5;0.4,0.6;0.2,0.8\"')
|
|
|
|
group1.add_argument('-m', '--mode', type=str,
|
|
default="interpolate",
|
|
choices=["counts","interpolate","loglinear"],
|
|
help='basic mixture-model algorithm. Default: %(default)s. Note: depending on mode and additional configuration, additional statistics are needed. Check docstring documentation of Combine_TMs() for more info.')
|
|
|
|
group1.add_argument('-r', '--reference', type=str,
|
|
default=None,
|
|
help='File containing reference phrase pairs for cross-entropy calculation. Default interface expects \'path/model/extract.gz\' that is produced by training a model on the reference (i.e. development) corpus.')
|
|
|
|
group1.add_argument('-o', '--output', type=str,
|
|
default="-",
|
|
help='Output file (phrase table). If not specified, model is written to standard output.')
|
|
|
|
group1.add_argument('--output-lexical', type=str,
|
|
default=None,
|
|
help=('Not only create a combined phrase table, but also combined lexical tables. Writes to OUTPUT_LEXICAL.e2f and OUTPUT_LEXICAL.f2e, or OUTPUT_LEXICAL.counts.e2f in mode \'counts\'.'))
|
|
|
|
group1.add_argument('--lowmem', action="store_true",
|
|
help=('Low memory mode: requires two passes (and sorting in between) to combine a phrase table, but loads less data into memory. Only relevant for mode "counts" and some configurations of mode "interpolate".'))
|
|
|
|
group1.add_argument('--tempdir', type=str,
|
|
default=None,
|
|
help=('Temporary directory in --lowmem mode.'))
|
|
|
|
group2.add_argument('--i_e2f', type=int,
|
|
default=0, metavar='N',
|
|
help=('Index of p(f|e) (relevant for mode counts if phrase table has custom feature order). (default: %(default)s)'))
|
|
|
|
group2.add_argument('--i_e2f_lex', type=int,
|
|
default=1, metavar='N',
|
|
help=('Index of lex(f|e) (relevant for mode counts or with option recompute_lexweights if phrase table has custom feature order). (default: %(default)s)'))
|
|
|
|
group2.add_argument('--i_f2e', type=int,
|
|
default=2, metavar='N',
|
|
help=('Index of p(e|f) (relevant for mode counts if phrase table has custom feature order). (default: %(default)s)'))
|
|
|
|
group2.add_argument('--i_f2e_lex', type=int,
|
|
default=3, metavar='N',
|
|
help=('Index of lex(e|f) (relevant for mode counts or with option recompute_lexweights if phrase table has custom feature order). (default: %(default)s)'))
|
|
|
|
group2.add_argument('--number_of_features', type=int,
|
|
default=4, metavar='N',
|
|
help=('Combine models with N + 1 features (last feature is constant phrase penalty). (default: %(default)s)'))
|
|
|
|
group2.add_argument('--normalized', action="store_true",
|
|
help=('for each phrase pair x,y: ignore models with p(y)=0, and distribute probability mass among models with p(y)>0. (default: missing entries (x,y) are always interpreted as p(x|y)=0). Only relevant in mode "interpolate".'))
|
|
|
|
group2.add_argument('--write-phrase-penalty', action="store_true",
|
|
help=("Include phrase penalty in phrase table"))
|
|
|
|
group2.add_argument('--recompute_lexweights', action="store_true",
|
|
help=('don\'t directly interpolate lexical weights, but interpolate word translation probabilities instead and recompute the lexical weights. Only relevant in mode "interpolate".'))
|
|
|
|
return parser.parse_args()
|
|
|
|
if __name__ == "__main__":
|
|
|
|
if len(sys.argv) < 2:
|
|
sys.stderr.write("no command specified. use option -h for usage instructions\n")
|
|
|
|
elif sys.argv[1] == "test":
|
|
test()
|
|
|
|
else:
|
|
args = parse_command_line()
|
|
#initialize
|
|
combiner = Combine_TMs([(m,'primary') for m in args.model],
|
|
weights=args.weights,
|
|
mode=args.mode,
|
|
output_file=args.output,
|
|
reference_file=args.reference,
|
|
output_lexical=args.output_lexical,
|
|
lowmem=args.lowmem,
|
|
normalized=args.normalized,
|
|
recompute_lexweights=args.recompute_lexweights,
|
|
tempdir=args.tempdir,
|
|
number_of_features=args.number_of_features,
|
|
i_e2f=args.i_e2f,
|
|
i_e2f_lex=args.i_e2f_lex,
|
|
i_f2e=args.i_f2e,
|
|
i_f2e_lex=args.i_f2e_lex,
|
|
write_phrase_penalty=args.write_phrase_penalty)
|
|
# execute right method
|
|
f_string = "combiner."+args.action+'()'
|
|
exec(f_string)
|