mosesdecoder/scripts/training/bilingual-lm/extract_training.py
Jeroen Vermeulen ef028446f3 Add license notices to scripts.
This is not pleasant to read (and much, much less pleasant to write!) but
sort of necessary in an open project.  Right now it's quite hard to figure
out what is licensed how, which doesn't matter much to most people but can
suddenly become very important when people want to know what they're being
allowed to do.

I kept the notices as short as I could.  As far as I could see, everything
without a clear license notice is LGPL v2.1 or later.
2015-05-29 18:30:26 +07:00

174 lines
5.6 KiB
Python
Executable File

#!/usr/bin/env python
#
# This file is part of moses. Its use is licensed under the GNU Lesser General
# Public License version 2.1 or, at your option, any later version.
from collections import Counter
import logging
import optparse
import os
import os.path
import sys
import extract
LOG = logging.getLogger(__name__)
def get_pruned_vocab(corpus, prune):
counts = Counter()
LOG.info("Reading vocabulary from %s" % corpus)
lines = 0
for line in open(corpus):
for token in line[:-1].split():
counts[token] += 1
lines += 1
if lines % 1000 == 0:
sys.stderr.write(".")
if lines % 50000 == 0:
sys.stderr.write(" [%d]\n" % lines)
sys.stderr.write("\n")
counts[extract.BOS] += lines
counts[extract.EOS] += lines
LOG.info("Vocabulary size: %d" % len(counts))
if prune:
return Counter(dict(counts.most_common(prune)))
else:
return counts
def save_vocab(directory, filename, vocab):
fh = open(directory + "/" + filename, "w")
for word in vocab:
print>>fh, word
def main():
logging.basicConfig(
format='%(asctime)s %(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S', level=logging.DEBUG)
parser = optparse.OptionParser("%prog [options]")
parser.add_option(
"-e", "--target-language", type="string", dest="target_language")
parser.add_option(
"-f", "--source-language", type="string", dest="source_language")
parser.add_option("-c", "--corpus", type="string", dest="corpus_stem")
parser.add_option(
"-t", "--tagged-corpus", type="string", dest="tagged_stem")
parser.add_option("-a", "--align", type="string", dest="align_file")
parser.add_option("-w", "--working-dir", type="string", dest="working_dir")
parser.add_option("-n", "--target-context", type="int", dest="n")
parser.add_option("-m", "--source-context", type="int", dest="m")
parser.add_option("-s", "--prune-source-vocab", type="int", dest="sprune")
parser.add_option("-p", "--prune-target-vocab", type="int", dest="tprune")
parser.set_defaults(
target_language="en",
source_language="de",
corpus_stem="train.10k",
align_file="train.10k.align",
n=5,
m=4,
working_dir="working",
sprune=16000,
tprune=16000
)
options, args = parser.parse_args(sys.argv)
if not os.path.exists(options.working_dir):
os.makedirs(options.working_dir)
else:
LOG.warn("Directory %s already exists, re-using" % options.working_dir)
info_file = options.working_dir + "/info"
if os.path.exists(info_file):
for line in open(info_file):
name, value = line[:-1].split()
n_mismatch = (name == 'n' and int(value) != options.n)
m_mismatch = (name == 'm' and int(value) != options.m)
if n_mismatch or m_mismatch:
LOG.error(
"info file exists, but parameters do not match. "
"Delete working directory and rerun.")
sys.exit(1)
else:
ifh = open(info_file, "w")
print>>ifh, "m", options.m
print>>ifh, "n", options.n
ifh.close()
scorpus = options.corpus_stem + "." + options.source_language
tcorpus = options.corpus_stem + "." + options.target_language
tvocab, svocab = None, None
# Extract vocabulary, and prune, if required.
svocab = get_pruned_vocab(scorpus, options.sprune)
tvocab = get_pruned_vocab(tcorpus, options.tprune)
file_stem = os.path.basename(options.corpus_stem)
ngram_file = options.working_dir + "/" + file_stem + ".ngrams"
ofh = open(ngram_file, "w")
tags = extract.get_ngrams(
options.corpus_stem,
options.align_file,
options.tagged_stem,
svocab,
tvocab,
options.source_language,
options.target_language,
options.m,
options.n,
ofh)
# Save vocabularies.
del svocab["<null>"]
del tvocab["<null>"]
del svocab["<unk>"]
del tvocab["<unk>"]
svocab_list = [item[0] for item in svocab.most_common()]
tvocab_list = [item[0] for item in tvocab.most_common()]
# UNK is always the first vocabulary element. Make sure
# it appears in position 0
# We need to use <null> token in the chart decoder in order
# to correctly estimate the probabilities of incomplete subphrases
# that are not sentence initial.
tvocab_list.insert(0, "<null>")
tvocab_list.insert(0, "<unk>")
svocab_list.insert(0, "<unk>")
# Get tags:
tag_list = [item[0] for item in tags.most_common()]
svocab_list = svocab_list + tag_list
tvocab_list = tvocab_list + tag_list
save_vocab(options.working_dir, "vocab.source", svocab_list)
save_vocab(options.working_dir, "vocab.target", tvocab_list)
# Create vocab dictionaries that map word to ID.
tvocab_idmap = {}
for i in range(len(tvocab_list)):
tvocab_idmap[tvocab_list[i]] = i
svocab_idmap = {}
for i in range(len(svocab_list)):
svocab_idmap[svocab_list[i]] = i + len(tvocab_idmap)
numberized_file = options.working_dir + "/" + file_stem + ".numberized"
ngrams_file_handle = open(ngram_file, 'r')
numberized_file_handle = open(numberized_file, 'w')
# Numberize the file.
for line in ngrams_file_handle:
numberized_file_handle.write(
extract.numberize(
line, options.m, options.n, svocab_idmap, tvocab_idmap))
numberized_file_handle.close()
ngrams_file_handle.close()
if __name__ == "__main__":
main()