mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-08 04:27:53 +03:00
151 lines
4.1 KiB
C++
151 lines
4.1 KiB
C++
#include "moses/LM/oxlm/SourceOxLM.h"
|
|
|
|
#include <boost/archive/binary_iarchive.hpp>
|
|
#include <boost/archive/binary_oarchive.hpp>
|
|
#include <boost/filesystem.hpp>
|
|
#include "moses/TypeDef.h"
|
|
#include "moses/TranslationTask.h"
|
|
|
|
using namespace std;
|
|
using namespace oxlm;
|
|
|
|
namespace Moses
|
|
{
|
|
|
|
SourceOxLM::SourceOxLM(const string &line)
|
|
: BilingualLM(line), posBackOff(false), posFactorType(1),
|
|
persistentCache(false), cacheHits(0), totalHits(0)
|
|
{
|
|
FactorCollection& factorFactory = FactorCollection::Instance(); // To add null word.
|
|
const Factor* NULL_factor = factorFactory.AddFactor("<unk>");
|
|
NULL_word.SetFactor(0, NULL_factor);
|
|
}
|
|
|
|
SourceOxLM::~SourceOxLM()
|
|
{
|
|
if (persistentCache) {
|
|
double cache_hit_ratio = 100.0 * cacheHits / totalHits;
|
|
cerr << "Cache hit ratio: " << cache_hit_ratio << endl;
|
|
}
|
|
}
|
|
|
|
float SourceOxLM::Score(
|
|
vector<int>& source_words,
|
|
vector<int>& target_words) const
|
|
{
|
|
// OxLM expects the context in the following format:
|
|
// [t_{n-1}, t_{n-2}, ..., t_{n-m}, s_{a_n-sm}, s_{a_n-sm+1}, ..., s_{a_n+sm}]
|
|
// where n is the index for the current target word, m is the target order,
|
|
// a_n is t_n's affiliation and sm is the source order.
|
|
vector<int> context = target_words;
|
|
int word = context.back();
|
|
context.pop_back();
|
|
reverse(context.begin(), context.end());
|
|
context.insert(context.end(), source_words.begin(), source_words.end());
|
|
|
|
float score;
|
|
if (persistentCache) {
|
|
if (!cache.get()) {
|
|
cache.reset(new QueryCache());
|
|
}
|
|
|
|
++totalHits;
|
|
NGram query(word, context);
|
|
pair<double, bool> ret = cache->get(query);
|
|
if (ret.second) {
|
|
score = ret.first;
|
|
++cacheHits;
|
|
} else {
|
|
score = model.getLogProb(word, context);
|
|
cache->put(query, score);
|
|
}
|
|
} else {
|
|
score = model.getLogProb(word, context);
|
|
}
|
|
|
|
// TODO(pauldb): Return OOV count too.
|
|
return score;
|
|
}
|
|
|
|
int SourceOxLM::getNeuralLMId(const Word& word, bool is_source_word) const
|
|
{
|
|
return is_source_word ? mapper->convertSource(word) : mapper->convert(word);
|
|
}
|
|
|
|
const Word& SourceOxLM::getNullWord() const
|
|
{
|
|
return NULL_word;
|
|
}
|
|
|
|
void SourceOxLM::loadModel()
|
|
{
|
|
model.load(m_filePath);
|
|
|
|
boost::shared_ptr<ModelData> config = model.getConfig();
|
|
source_ngrams = 2 * config->source_order - 1;
|
|
target_ngrams = config->ngram_order - 1;
|
|
|
|
boost::shared_ptr<Vocabulary> vocab = model.getVocab();
|
|
mapper = boost::make_shared<OxLMParallelMapper>(
|
|
vocab, posBackOff, posFactorType);
|
|
}
|
|
|
|
void SourceOxLM::SetParameter(const string& key, const string& value)
|
|
{
|
|
if (key == "persistent-cache") {
|
|
persistentCache = Scan<bool>(value);
|
|
} else if (key == "pos-back-off") {
|
|
posBackOff = Scan<bool>(value);
|
|
} else if (key == "pos-factor-type") {
|
|
posFactorType = Scan<FactorType>(value);
|
|
} else {
|
|
BilingualLM::SetParameter(key, value);
|
|
}
|
|
}
|
|
|
|
void SourceOxLM::InitializeForInput(ttasksptr const& ttask)
|
|
{
|
|
const InputType& source = *ttask->GetSource();
|
|
BilingualLM::InitializeForInput(ttask);
|
|
|
|
if (persistentCache) {
|
|
if (!cache.get()) {
|
|
cache.reset(new QueryCache());
|
|
}
|
|
|
|
int sentence_id = source.GetTranslationId();
|
|
string cacheFile = m_filePath + "." + to_string(sentence_id) + ".cache.bin";
|
|
if (boost::filesystem::exists(cacheFile)) {
|
|
ifstream fin(cacheFile);
|
|
boost::archive::binary_iarchive iar(fin);
|
|
cerr << "Loading n-gram probability cache from " << cacheFile << endl;
|
|
iar >> *cache;
|
|
cerr << "Done loading " << cache->size()
|
|
<< " n-gram probabilities..." << endl;
|
|
} else {
|
|
cerr << "Cache file not found!" << endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SourceOxLM::CleanUpAfterSentenceProcessing(const InputType& source)
|
|
{
|
|
// Thread safe: the model cache is thread specific.
|
|
model.clearCache();
|
|
|
|
if (persistentCache) {
|
|
int sentence_id = source.GetTranslationId();
|
|
string cacheFile = m_filePath + "." + to_string(sentence_id) + ".cache.bin";
|
|
ofstream fout(cacheFile);
|
|
boost::archive::binary_oarchive oar(fout);
|
|
cerr << "Saving persistent cache to " << cacheFile << endl;
|
|
oar << *cache;
|
|
cerr << "Done saving " << cache->size()
|
|
<< " n-gram probabilities..." << endl;
|
|
|
|
cache->clear();
|
|
}
|
|
}
|
|
|
|
} // namespace Moses
|