mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2024-12-26 21:42:19 +03:00
550 lines
15 KiB
C++
550 lines
15 KiB
C++
/**
|
|
* \description This is the main for the new version of the mert algorithm developed during the 2nd MT marathon
|
|
*/
|
|
|
|
#include <limits>
|
|
#include <unistd.h>
|
|
#include <cstdlib>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <cmath>
|
|
#include <ctime>
|
|
|
|
#include <getopt.h>
|
|
#include <boost/scoped_ptr.hpp>
|
|
|
|
#include "Data.h"
|
|
#include "Point.h"
|
|
#include "Scorer.h"
|
|
#include "ScorerFactory.h"
|
|
#include "ScoreData.h"
|
|
#include "FeatureData.h"
|
|
#include "Optimizer.h"
|
|
#include "OptimizerFactory.h"
|
|
#include "Types.h"
|
|
#include "Timer.h"
|
|
#include "Util.h"
|
|
|
|
#include "moses/ThreadPool.h"
|
|
|
|
using namespace std;
|
|
using namespace MosesTuning;
|
|
|
|
namespace
|
|
{
|
|
|
|
const char kDefaultOptimizer[] = "powell";
|
|
const char kDefaultScorer[] = "BLEU";
|
|
const char kDefaultScorerFile[] = "statscore.data";
|
|
const char kDefaultFeatureFile[] = "features.data";
|
|
const char kDefaultInitFile[] = "init.opt";
|
|
const char kDefaultPositiveString[] = "";
|
|
const char kDefaultSparseWeightsFile[] = "";
|
|
|
|
// Used when saving optimized weights.
|
|
const char kOutputFile[] = "weights.txt";
|
|
|
|
/**
|
|
* Runs an optimisation, or a random restart.
|
|
*/
|
|
class OptimizationTask : public Moses::Task
|
|
{
|
|
public:
|
|
OptimizationTask(Optimizer* optimizer, const Point& point)
|
|
: m_optimizer(optimizer), m_point(point) {}
|
|
|
|
~OptimizationTask() {}
|
|
|
|
virtual void Run() {
|
|
m_score = m_optimizer->Run(m_point);
|
|
}
|
|
|
|
virtual bool DeleteAfterExecution() {
|
|
return false;
|
|
}
|
|
|
|
void resetOptimizer() {
|
|
if (m_optimizer) {
|
|
delete m_optimizer;
|
|
m_optimizer = NULL;
|
|
}
|
|
}
|
|
|
|
statscore_t getScore() const {
|
|
return m_score;
|
|
}
|
|
|
|
const Point& getPoint() const {
|
|
return m_point;
|
|
}
|
|
|
|
private:
|
|
// Do not allow the user to instanciate without arguments.
|
|
OptimizationTask() {}
|
|
|
|
Optimizer* m_optimizer;
|
|
Point m_point;
|
|
statscore_t m_score;
|
|
};
|
|
|
|
bool WriteFinalWeights(const char* filename, const Point& point)
|
|
{
|
|
ofstream ofs(filename);
|
|
if (!ofs) {
|
|
cerr << "Cannot open " << filename << endl;
|
|
return false;
|
|
}
|
|
|
|
ofs << point << endl;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void usage(int ret)
|
|
{
|
|
cerr<<"usage: mert -d <dimensions> (mandatory )"<<endl;
|
|
cerr<<"[-n] retry ntimes (default 1)"<<endl;
|
|
cerr<<"[-m] number of random directions in powell (default 0)"<<endl;
|
|
cerr<<"[-o] the indexes to optimize(default all)"<<endl;
|
|
cerr<<"[-t] the optimizer(default powell)"<<endl;
|
|
cerr<<"[-r] the random seed (defaults to system clock)"<<endl;
|
|
cerr<<"[--sctype|-s] the scorer type (default BLEU)"<<endl;
|
|
cerr<<"[--scconfig|-c] configuration string passed to scorer"<<endl;
|
|
cerr<<"[--scfile|-S] comma separated list of scorer data files (default score.data)"<<endl;
|
|
cerr<<"[--ffile|-F] comma separated list of feature data files (default feature.data)"<<endl;
|
|
cerr<<"[--ifile|-i] the starting point data file (default init.opt)"<<endl;
|
|
cerr<<"[--sparse-weights|-p] required for merging sparse features"<<endl;
|
|
#ifdef WITH_THREADS
|
|
cerr<<"[--threads|-T] use multiple threads (default 1)"<<endl;
|
|
#endif
|
|
cerr<<"[--shard-count] Split data into shards, optimize for each shard and average"<<endl;
|
|
cerr<<"[--shard-size] Shard size as proportion of data. If 0, use non-overlapping shards"<<endl;
|
|
cerr<<"[-v] verbose level"<<endl;
|
|
cerr<<"[--help|-h] print this message and exit"<<endl;
|
|
exit(ret);
|
|
}
|
|
|
|
static struct option long_options[] = {
|
|
{"pdim", 1, 0, 'd'},
|
|
{"ntry",1,0,'n'},
|
|
{"nrandom",1,0,'m'},
|
|
{"rseed",required_argument,0,'r'},
|
|
{"optimize",1,0,'o'},
|
|
{"type",1,0,'t'},
|
|
{"sctype",1,0,'s'},
|
|
{"scconfig",required_argument,0,'c'},
|
|
{"scfile",1,0,'S'},
|
|
{"ffile",1,0,'F'},
|
|
{"ifile",1,0,'i'},
|
|
{"sparse-weights",required_argument,0,'p'},
|
|
#ifdef WITH_THREADS
|
|
{"threads", required_argument,0,'T'},
|
|
#endif
|
|
{"shard-count", required_argument, 0, 'a'},
|
|
{"shard-size", required_argument, 0, 'b'},
|
|
{"verbose",1,0,'v'},
|
|
{"help",no_argument,0,'h'},
|
|
{0, 0, 0, 0}
|
|
};
|
|
|
|
struct ProgramOption {
|
|
string to_optimize_str;
|
|
int pdim;
|
|
int ntry;
|
|
int nrandom;
|
|
int seed;
|
|
bool has_seed;
|
|
string optimize_type;
|
|
string scorer_type;
|
|
string scorer_config;
|
|
string scorer_file;
|
|
string feature_file;
|
|
string init_file;
|
|
string positive_string;
|
|
string sparse_weights_file;
|
|
size_t num_threads;
|
|
float shard_size;
|
|
size_t shard_count;
|
|
|
|
ProgramOption()
|
|
: to_optimize_str(""),
|
|
pdim(-1),
|
|
ntry(1),
|
|
nrandom(0),
|
|
seed(0),
|
|
has_seed(false),
|
|
optimize_type(kDefaultOptimizer),
|
|
scorer_type(kDefaultScorer),
|
|
scorer_config(""),
|
|
scorer_file(kDefaultScorerFile),
|
|
feature_file(kDefaultFeatureFile),
|
|
init_file(kDefaultInitFile),
|
|
positive_string(kDefaultPositiveString),
|
|
sparse_weights_file(kDefaultSparseWeightsFile),
|
|
num_threads(1),
|
|
shard_size(0),
|
|
shard_count(0) { }
|
|
};
|
|
|
|
void ParseCommandOptions(int argc, char** argv, ProgramOption* opt)
|
|
{
|
|
int c;
|
|
int option_index;
|
|
|
|
while ((c = getopt_long(argc, argv, "o:r:d:n:m:t:s:S:F:v:p:P:", long_options, &option_index)) != -1) {
|
|
switch (c) {
|
|
case 'o':
|
|
opt->to_optimize_str = string(optarg);
|
|
break;
|
|
case 'd':
|
|
opt->pdim = strtol(optarg, NULL, 10);
|
|
break;
|
|
case 'n':
|
|
opt->ntry = strtol(optarg, NULL, 10);
|
|
break;
|
|
case 'm':
|
|
opt->nrandom = strtol(optarg, NULL, 10);
|
|
break;
|
|
case 'r':
|
|
opt->seed = strtol(optarg, NULL, 10);
|
|
opt->has_seed = true;
|
|
break;
|
|
case 't':
|
|
opt->optimize_type = string(optarg);
|
|
break;
|
|
case's':
|
|
opt->scorer_type = string(optarg);
|
|
break;
|
|
case 'c':
|
|
opt->scorer_config = string(optarg);
|
|
break;
|
|
case 'S':
|
|
opt->scorer_file = string(optarg);
|
|
break;
|
|
case 'F':
|
|
opt->feature_file = string(optarg);
|
|
break;
|
|
case 'i':
|
|
opt->init_file = string(optarg);
|
|
break;
|
|
case 'p':
|
|
opt->sparse_weights_file=string(optarg);
|
|
break;
|
|
case 'v':
|
|
setverboselevel(strtol(optarg, NULL, 10));
|
|
break;
|
|
#ifdef WITH_THREADS
|
|
case 'T':
|
|
opt->num_threads = strtol(optarg, NULL, 10);
|
|
if (opt->num_threads < 1) opt->num_threads = 1;
|
|
break;
|
|
#endif
|
|
case 'a':
|
|
opt->shard_count = strtof(optarg, NULL);
|
|
break;
|
|
case 'b':
|
|
opt->shard_size = strtof(optarg, NULL);
|
|
break;
|
|
case 'h':
|
|
usage(0);
|
|
break;
|
|
case 'P':
|
|
opt->positive_string = string(optarg);
|
|
break;
|
|
default:
|
|
usage(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
ResetUserTime();
|
|
|
|
ProgramOption option;
|
|
ParseCommandOptions(argc, argv, &option);
|
|
|
|
vector<unsigned> to_optimize;
|
|
vector<vector<parameter_t> > start_list;
|
|
vector<parameter_t> min;
|
|
vector<parameter_t> max;
|
|
vector<bool> positive;
|
|
// NOTE: those mins and max are the bound for the starting points of the algorithm, not strict bound on the result!
|
|
|
|
if (option.pdim < 0)
|
|
usage(1);
|
|
|
|
cerr << "shard_size = " << option.shard_size << " shard_count = " << option.shard_count << endl;
|
|
if (option.shard_size && !option.shard_count) {
|
|
cerr << "Error: shard-size provided without shard-count" << endl;
|
|
exit(1);
|
|
}
|
|
if (option.shard_size > 1 || option.shard_size < 0) {
|
|
cerr << "Error: shard-size should be between 0 and 1" << endl;
|
|
exit(1);
|
|
}
|
|
|
|
if (option.has_seed) {
|
|
cerr << "Seeding random numbers with " << option.seed << endl;
|
|
srandom(option.seed);
|
|
} else {
|
|
cerr << "Seeding random numbers with system clock " << endl;
|
|
srandom(time(NULL));
|
|
}
|
|
|
|
if (option.sparse_weights_file.size()) ++option.pdim;
|
|
|
|
// read in starting points
|
|
string onefile;
|
|
while (!option.init_file.empty()) {
|
|
getNextPound(option.init_file, onefile, ",");
|
|
vector<parameter_t> start;
|
|
ifstream opt(onefile.c_str());
|
|
if (opt.fail()) {
|
|
cerr << "could not open initfile: " << option.init_file << endl;
|
|
exit(3);
|
|
}
|
|
start.resize(option.pdim);//to do:read from file
|
|
int j;
|
|
for (j = 0; j < option.pdim && !opt.fail(); j++) {
|
|
opt >> start[j];
|
|
}
|
|
if (j < option.pdim) {
|
|
cerr << option.init_file << ":Too few starting weights." << endl;
|
|
exit(3);
|
|
}
|
|
start_list.push_back(start);
|
|
// for the first time, also read in the min/max values for scores
|
|
if (start_list.size() == 1) {
|
|
min.resize(option.pdim);
|
|
for (j = 0; j < option.pdim && !opt.fail(); j++) {
|
|
opt >> min[j];
|
|
}
|
|
if (j < option.pdim) {
|
|
cerr << option.init_file << ":Too few minimum weights." << endl;
|
|
cerr << "error could not initialize start point with " << option.init_file << endl;
|
|
cerr << "j: " << j << ", pdim: " << option.pdim << endl;
|
|
exit(3);
|
|
}
|
|
max.resize(option.pdim);
|
|
for (j = 0; j < option.pdim && !opt.fail(); j++) {
|
|
opt >> max[j];
|
|
}
|
|
if (j < option.pdim) {
|
|
cerr << option.init_file << ":Too few maximum weights." << endl;
|
|
exit(3);
|
|
}
|
|
}
|
|
opt.close();
|
|
}
|
|
|
|
vector<string> ScoreDataFiles;
|
|
if (option.scorer_file.length() > 0) {
|
|
Tokenize(option.scorer_file.c_str(), ',', &ScoreDataFiles);
|
|
}
|
|
|
|
vector<string> FeatureDataFiles;
|
|
if (option.feature_file.length() > 0) {
|
|
Tokenize(option.feature_file.c_str(), ',', &FeatureDataFiles);
|
|
}
|
|
|
|
if (ScoreDataFiles.size() != FeatureDataFiles.size()) {
|
|
throw runtime_error("Error: there is a different number of previous score and feature files");
|
|
}
|
|
|
|
// it make sense to know what parameter set were used to generate the nbest
|
|
boost::scoped_ptr<Scorer> scorer(
|
|
ScorerFactory::getScorer(option.scorer_type, option.scorer_config));
|
|
|
|
//load data
|
|
Data data(scorer.get(), option.sparse_weights_file);
|
|
|
|
for (size_t i = 0; i < ScoreDataFiles.size(); i++) {
|
|
cerr<<"Loading Data from: "<< ScoreDataFiles.at(i) << " and " << FeatureDataFiles.at(i) << endl;
|
|
data.load(FeatureDataFiles.at(i), ScoreDataFiles.at(i));
|
|
}
|
|
|
|
scorer->setScoreData(data.getScoreData().get());
|
|
|
|
data.removeDuplicates();
|
|
|
|
PrintUserTime("Data loaded");
|
|
|
|
// starting point score over latest n-best, accumulative n-best
|
|
//vector<unsigned> bests;
|
|
//compute bests with sparse features needs to be implemented
|
|
//currently sparse weights are not even loaded
|
|
//statscore_t score = TheScorer->score(bests);
|
|
|
|
if (option.to_optimize_str.length() > 0) {
|
|
cerr << "Weights to optimize: " << option.to_optimize_str << endl;
|
|
|
|
// Parse the string to get weights to optimize, and set them as active.
|
|
vector<string> features;
|
|
Tokenize(option.to_optimize_str.c_str(), ',', &features);
|
|
|
|
for (vector<string>::const_iterator it = features.begin();
|
|
it != features.end(); ++it) {
|
|
const int feature_index = data.getFeatureIndex(*it);
|
|
|
|
// Note: previous implementaion checked whether
|
|
// feature_index is less than option.pdim.
|
|
// However, it does not make sense when we optimize 'discrete' features,
|
|
// given by '-o' option like -o "d_0,lm_0,tm_2,tm_3,tm_4,w_0".
|
|
if (feature_index < 0) {
|
|
cerr << "Error: invalid feature index = " << feature_index << endl;
|
|
exit(1);
|
|
}
|
|
cerr << "FeatNameIndex: " << feature_index << " to insert" << endl;
|
|
to_optimize.push_back(feature_index);
|
|
}
|
|
} else {
|
|
//set all weights as active
|
|
to_optimize.resize(option.pdim);//We'll optimize on everything
|
|
for (int i = 0; i < option.pdim; i++) {
|
|
to_optimize[i] = 1;
|
|
}
|
|
}
|
|
|
|
positive.resize(option.pdim);
|
|
for (int i = 0; i < option.pdim; i++)
|
|
positive[i] = false;
|
|
if (option.positive_string.length() > 0) {
|
|
// Parse string to get weights that need to be positive
|
|
std::string substring;
|
|
int index;
|
|
while (!option.positive_string.empty()) {
|
|
getNextPound(option.positive_string, substring, ",");
|
|
index = data.getFeatureIndex(substring);
|
|
//index = strtol(substring.c_str(), NULL, 10);
|
|
if (index >= 0 && index < option.pdim) {
|
|
positive[index] = true;
|
|
} else {
|
|
cerr << "Index " << index
|
|
<< " is out of bounds in positivity list. Allowed indexes are [0,"
|
|
<< (option.pdim-1) << "]." << endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef WITH_THREADS
|
|
cerr << "Creating a pool of " << option.num_threads << " threads" << endl;
|
|
Moses::ThreadPool pool(option.num_threads);
|
|
#endif
|
|
|
|
Point::setpdim(option.pdim);
|
|
Point::setdim(to_optimize.size());
|
|
Point::set_optindices(to_optimize);
|
|
|
|
//starting points consist of specified points and random restarts
|
|
vector<Point> startingPoints;
|
|
|
|
for (size_t i = 0; i < start_list.size(); ++i) {
|
|
startingPoints.push_back(Point(start_list[i], min, max));
|
|
}
|
|
|
|
for (int i = 0; i < option.ntry; ++i) {
|
|
startingPoints.push_back(Point(start_list[0], min, max));
|
|
startingPoints.back().Randomize();
|
|
}
|
|
|
|
vector<vector<OptimizationTask*> > allTasks(1);
|
|
|
|
//optional sharding
|
|
vector<Data> shards;
|
|
if (option.shard_count) {
|
|
data.createShards(option.shard_count, option.shard_size, option.scorer_config, shards);
|
|
allTasks.resize(option.shard_count);
|
|
}
|
|
|
|
// launch tasks
|
|
for (size_t i = 0; i < allTasks.size(); ++i) {
|
|
Data& data_ref = data;
|
|
if (option.shard_count)
|
|
data_ref = shards[i]; //use the sharded data if it exists
|
|
|
|
vector<OptimizationTask*>& tasks = allTasks[i];
|
|
Optimizer *optimizer = OptimizerFactory::BuildOptimizer(option.pdim, to_optimize, positive, start_list[0], option.optimize_type, option.nrandom);
|
|
optimizer->SetScorer(data_ref.getScorer());
|
|
optimizer->SetFeatureData(data_ref.getFeatureData());
|
|
// A task for each start point
|
|
for (size_t j = 0; j < startingPoints.size(); ++j) {
|
|
OptimizationTask* task = new OptimizationTask(optimizer, startingPoints[j]);
|
|
tasks.push_back(task);
|
|
#ifdef WITH_THREADS
|
|
pool.Submit(task);
|
|
#else
|
|
task->Run();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// wait for all threads to finish
|
|
#ifdef WITH_THREADS
|
|
pool.Stop(true);
|
|
#endif
|
|
|
|
statscore_t total = 0;
|
|
Point totalP;
|
|
|
|
// collect results
|
|
for (size_t i = 0; i < allTasks.size(); ++i) {
|
|
statscore_t best = 0, mean = 0, var = 0;
|
|
Point bestP;
|
|
for (size_t j = 0; j < allTasks[i].size(); ++j) {
|
|
statscore_t score = allTasks[i][j]->getScore();
|
|
mean += score;
|
|
var += score * score;
|
|
if (score > best) {
|
|
bestP = allTasks[i][j]->getPoint();
|
|
best = score;
|
|
}
|
|
}
|
|
|
|
mean /= static_cast<float>(option.ntry);
|
|
var /= static_cast<float>(option.ntry);
|
|
var = sqrt(abs(var - mean * mean));
|
|
|
|
if (verboselevel() > 1) {
|
|
cerr << "shard " << i << " best score: " << best << " variance of the score (for " << option.ntry << " try): " << var << endl;
|
|
}
|
|
|
|
totalP += bestP;
|
|
total += best;
|
|
if (verboselevel() > 1)
|
|
cerr << "bestP " << bestP << endl;
|
|
}
|
|
|
|
//cerr << "totalP: " << totalP << endl;
|
|
Point finalP = totalP * (1.0 / allTasks.size());
|
|
statscore_t final = total / allTasks.size();
|
|
|
|
if (verboselevel() > 1)
|
|
cerr << "bestP: " << finalP << endl;
|
|
|
|
// L1-Normalization of the best Point
|
|
if (static_cast<int>(to_optimize.size()) == option.pdim) {
|
|
finalP.NormalizeL1();
|
|
}
|
|
|
|
cerr << "Best point: " << finalP << " => " << final << endl;
|
|
|
|
if (!WriteFinalWeights(kOutputFile, finalP)) {
|
|
cerr << "Warning: Failed to write the final point" << endl;
|
|
}
|
|
|
|
for (size_t i = 0; i < allTasks.size(); ++i) {
|
|
allTasks[i][0]->resetOptimizer();
|
|
for (size_t j = 0; j < allTasks[i].size(); ++j) {
|
|
delete allTasks[i][j];
|
|
}
|
|
}
|
|
|
|
PrintUserTime("Stopping...");
|
|
|
|
return 0;
|
|
}
|