mosesdecoder/contrib/other-builds/moses2/Search/CubePruningPerBitmap/Search.cpp
2016-02-09 13:43:10 +00:00

287 lines
7.5 KiB
C++

/*
* Search.cpp
*
* Created on: 16 Nov 2015
* Author: hieu
*/
#include <boost/foreach.hpp>
#include "Search.h"
#include "../Manager.h"
#include "../Hypothesis.h"
#include "../../InputPaths.h"
#include "../../InputPath.h"
#include "../../System.h"
#include "../../Sentence.h"
#include "../../TranslationTask.h"
#include "../../legacy/Util2.h"
using namespace std;
namespace Moses2
{
namespace NSCubePruningPerBitmap
{
////////////////////////////////////////////////////////////////////////
Search::Search(Manager &mgr)
:Moses2::Search(mgr)
,m_stacks(mgr)
,m_cubeEdgeAlloc(mgr.GetPool())
,m_queue(QueueItemOrderer(),
std::vector<QueueItem*, MemPoolAllocator<QueueItem*> >(MemPoolAllocator<QueueItem*>(mgr.GetPool())) )
,m_seenPositions(MemPoolAllocator<CubeEdge::SeenPositionItem>(mgr.GetPool()))
{
}
Search::~Search()
{
}
void Search::Decode()
{
// init stacks
m_stacks.Init(mgr.GetInput().GetSize() + 1);
const Bitmap &initBitmap = mgr.GetBitmaps().GetInitialBitmap();
Hypothesis *initHypo = Hypothesis::Create(mgr.GetSystemPool(), mgr);
initHypo->Init(mgr, mgr.GetInputPaths().GetBlank(), mgr.GetInitPhrase(), initBitmap);
initHypo->EmptyHypothesisState(mgr.GetInput());
m_stacks.Add(initHypo, mgr.GetHypoRecycle());
for (size_t stackInd = 0; stackInd < m_stacks.GetSize() - 1; ++stackInd) {
CreateSearchGraph(stackInd);
}
for (size_t stackInd = 1; stackInd < m_stacks.GetSize(); ++stackInd) {
//cerr << "stackInd=" << stackInd << endl;
Decode(stackInd);
//cerr << m_stacks << endl;
}
//DebugCounts();
}
void Search::Decode(size_t stackInd)
{
NSCubePruningMiniStack::Stack &stack = m_stacks[stackInd];
// FOR EACH BITMAP IN EACH STACK
boost::unordered_map<const Bitmap*, vector<NSCubePruningMiniStack::MiniStack*> > uniqueBM;
BOOST_FOREACH(NSCubePruningMiniStack::Stack::Coll::value_type &val, stack.GetColl()) {
NSCubePruningMiniStack::MiniStack &miniStack = *val.second;
const Bitmap *bitmap = val.first.first;
uniqueBM[bitmap].push_back(&miniStack);
}
// decode each bitmap
boost::unordered_map<const Bitmap*, vector<NSCubePruningMiniStack::MiniStack*> >::iterator iter;
for (iter = uniqueBM.begin(); iter != uniqueBM.end(); ++iter) {
const vector<NSCubePruningMiniStack::MiniStack*> &miniStacks = iter->second;
Decode(miniStacks);
}
/*
// FOR EACH STACK
vector<NSCubePruningMiniStack::MiniStack*> miniStacks;
BOOST_FOREACH(NSCubePruningMiniStack::Stack::Coll::value_type &val, stack.GetColl()) {
NSCubePruningMiniStack::MiniStack &miniStack = *val.second;
miniStacks.push_back(&miniStack);
}
Decode(miniStacks);
*/
}
void Search::Decode(const vector<NSCubePruningMiniStack::MiniStack*> &miniStacks)
{
Recycler<Hypothesis*> &hypoRecycler = mgr.GetHypoRecycle();
// reuse queue from previous stack. Clear it first
std::vector<QueueItem*, MemPoolAllocator<QueueItem*> > &container = Container(m_queue);
//cerr << "container=" << container.size() << endl;
BOOST_FOREACH(QueueItem *item, container) {
// recycle unused hypos from queue
Hypothesis *hypo = item->hypo;
hypoRecycler.Recycle(hypo);
// recycle queue item
m_queueItemRecycler.push_back(item);
}
container.clear();
m_seenPositions.clear();
//Prefetch(stackInd);
BOOST_FOREACH(NSCubePruningMiniStack::MiniStack *miniStack, miniStacks) {
// add top hypo from every edge into queue
CubeEdges &edges = *m_cubeEdges[miniStack];
BOOST_FOREACH(CubeEdge *edge, edges) {
//cerr << "edge=" << *edge << endl;
edge->CreateFirst(mgr, m_queue, m_seenPositions, m_queueItemRecycler);
}
}
size_t pops = 0;
while (!m_queue.empty() && pops < mgr.system.popLimit) {
// get best hypo from queue, add to stack
//cerr << "queue=" << queue.size() << endl;
QueueItem *item = m_queue.top();
m_queue.pop();
CubeEdge *edge = item->edge;
// prefetching
/*
Hypothesis::Prefetch(mgr); // next hypo in recycler
edge.Prefetch(mgr, item, m_queue, m_seenPositions); //next hypos of current item
QueueItem *itemNext = m_queue.top();
CubeEdge &edgeNext = itemNext->edge;
edgeNext.Prefetch(mgr, itemNext, m_queue, m_seenPositions); //next hypos of NEXT item
*/
// add hypo to stack
Hypothesis *hypo = item->hypo;
//cerr << "hypo=" << *hypo << " " << hypo->GetBitmap() << endl;
m_stacks.Add(hypo, hypoRecycler);
edge->CreateNext(mgr, item, m_queue, m_seenPositions, m_queueItemRecycler);
++pops;
}
/*
// create hypo from every edge. Increase diversity
while (!m_queue.empty()) {
QueueItem *item = m_queue.top();
m_queue.pop();
if (item->hypoIndex == 0 && item->tpIndex == 0) {
CubeEdge &edge = item->edge;
// add hypo to stack
Hypothesis *hypo = item->hypo;
//cerr << "hypo=" << *hypo << " " << hypo->GetBitmap() << endl;
m_stacks.Add(hypo, mgr.GetHypoRecycle());
}
}
*/
}
void Search::CreateSearchGraph(size_t stackInd)
{
NSCubePruningMiniStack::Stack &stack = m_stacks[stackInd];
MemPool &pool = mgr.GetPool();
BOOST_FOREACH(const NSCubePruningMiniStack::Stack::Coll::value_type &val, stack.GetColl()) {
const Bitmap &hypoBitmap = *val.first.first;
size_t hypoEndPos = val.first.second;
//cerr << "key=" << hypoBitmap << " " << hypoEndPos << endl;
// create edges to next hypos from existing hypos
const InputPaths &paths = mgr.GetInputPaths();
BOOST_FOREACH(const InputPath *path, paths) {
const Range &pathRange = path->range;
//cerr << "pathRange=" << pathRange << endl;
if (!path->IsUsed()) {
continue;
}
if (!CanExtend(hypoBitmap, hypoEndPos, pathRange)) {
continue;
}
const Bitmap &newBitmap = mgr.GetBitmaps().GetBitmap(hypoBitmap, pathRange);
// sort hypo for a particular bitmap and hypoEndPos
const NSCubePruningMiniStack::MiniStack &miniStack = *val.second;
// add cube edge
size_t numPt = mgr.system.mappings.size();
for (size_t i = 0; i < numPt; ++i) {
const TargetPhrases *tps = path->targetPhrases[i];
if (tps && tps->GetSize()) {
// create next mini stack
NSCubePruningMiniStack::MiniStack &nextMiniStack = m_stacks.GetMiniStack(newBitmap, pathRange);
CubeEdge *edge = new (pool.Allocate<CubeEdge>()) CubeEdge(mgr, miniStack, *path, *tps, newBitmap);
CubeEdges *edges;
boost::unordered_map<NSCubePruningMiniStack::MiniStack*, CubeEdges*>::iterator iter = m_cubeEdges.find(&nextMiniStack);
if (iter == m_cubeEdges.end()) {
edges = new (pool.Allocate<CubeEdges>()) CubeEdges(m_cubeEdgeAlloc);
m_cubeEdges[&nextMiniStack] = edges;
}
else {
edges = iter->second;
}
edges->push_back(edge);
}
}
}
}
}
const Hypothesis *Search::GetBestHypothesis() const
{
const NSCubePruningMiniStack::Stack &lastStack = m_stacks.Back();
std::vector<const Hypothesis*> sortedHypos = lastStack.GetBestHypos(1);
const Hypothesis *best = NULL;
if (sortedHypos.size()) {
best = sortedHypos[0];
}
return best;
}
void Search::DebugCounts()
{
std::map<size_t, size_t> counts;
for (size_t stackInd = 0; stackInd < m_stacks.GetSize(); ++stackInd) {
//cerr << "stackInd=" << stackInd << endl;
const NSCubePruningMiniStack::Stack &stack = m_stacks[stackInd];
BOOST_FOREACH(const NSCubePruningMiniStack::Stack::Coll::value_type &val, stack.GetColl()) {
const NSCubePruningMiniStack::MiniStack &miniStack = *val.second;
size_t count = miniStack.GetColl().size();
if (counts.find(count) == counts.end()) {
counts[count] = 0;
}
else {
++counts[count];
}
}
//cerr << m_stacks << endl;
}
std::map<size_t, size_t>::const_iterator iter;
for (iter = counts.begin(); iter != counts.end(); ++iter) {
cerr << iter->first << "=" << iter->second << " ";
}
cerr << endl;
}
}
}